Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul-Sep;12(3):644-650.
doi: 10.4103/aer.AER_77_18.

Caudal Analgesia for Hypospadias in Pediatrics: Comparative Evaluation of Adjuvants Dexamethasone and Dexmedetomidine Combination versus Dexamethasone or Dexmedetomidine to Bupivacaine: A Prospective, Double-Blinded, Randomized Comparative Study

Affiliations

Caudal Analgesia for Hypospadias in Pediatrics: Comparative Evaluation of Adjuvants Dexamethasone and Dexmedetomidine Combination versus Dexamethasone or Dexmedetomidine to Bupivacaine: A Prospective, Double-Blinded, Randomized Comparative Study

Passaint Fahim Hassan et al. Anesth Essays Res. 2018 Jul-Sep.

Abstract

Background: Caudal block is the most commonly used regional anesthetic technique in pediatric surgeries; different additives have been used for better and safer outcome.

Aim: The aim of this study is to compare the combination of dexamethasone and dexmedetomidine as adjuvants to bupivacaine versus using each agent solely with bupivacaine in pediatric caudal block as regards their efficiency in pain relief (the duration of postoperative analgesia, first time to request analgesia, and modified objective pain score [MOPS]).

Study design: This was a prospective, double-blinded, randomized study.

Patients and methods: Patients and Methods: Sixty-three children scheduled for hypospadias surgery wererandomized into three groupsaccording to the adjuvant drug added to caudal bupivacaine : Group I (n = 21): dexamethasone 0.1 mg/kg + 0.5 mg/kg bupivacaine 0.25%, Group II (n = 21): dexmedetomidine0.01 μg/kg + 0.5 mg/kg bupivacaine 0.25% and Group III (n = 21): dexamethasone 0.1 mg/kg + dexmedetomidine 0.01 μg/kg + 0.5 mg/kgbupivacaine 0.25%. Intraoperative and postoperative hemodynamics were recorded. In postoperative anesthesia care unit and then the ward, MOPS and sedation score were recorded at 30 min and 1, 2, 3, 6 and 12 h. Further, the time of first analgesic request and side effects were recorded.

Statistical analysis: Categorical data were presented as frequencies (%) and analyzed using Chi-square test. Continuous data were presented as mean (standard deviation) and median (quartiles). Continuous data were analyzed using one-way analysis of variance for single measures and two-way mixed model for repeated measures. Kaplan-Meier analysis was performed for the duration of analgesia.

Results: In Group III, MOPS was lower than Groups I and II at the study times. Further, Group III had prolonged time for first request of analgesic. Sedation scores were prolonged in Group III and Group II than in Group I. There was a reduction in heart rates in Group III more than Group I and Group II but with no significant difference. However, there was a significant reduction in mean arterial blood pressure 30 min intraoperatively and postoperatively in Group III as compared to Groups I and II.

Conclusion: The addition of combined dexmedetomidine at a dose of 1 μg/kg and dexamethasone 0.1 mg/kg to caudal bupivacaine seemed to be an attractive alternative to each drug if used alone with more prolonged analgesia and almost no adverse effects.

Keywords: Caudal block; combined dexamethasone and dexmedetomidine; hypospadias surgery; pediatric surgery; postoperative analgesia.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Consort chart
Figure 2
Figure 2
*P < 0.05 significant difference between Dexmedetomidine group and decadron group, #P < 0.05 significant difference between Combined (dex + decadron) group and decadron group, πP < 0.05 significant difference between Dexmedetomidine group and combined group. T1 ½ h, T2 1hr, T3 2hr, T4 3hr, T5 6hr, T6 12hr postoperatively
Figure 3
Figure 3
Heart rate changes at different times in each group. Data expressed as mean ± standard deviation. T1 Baseline, T2 at induction, T3 30 min intraoperative, T4 postoperative
Figure 4
Figure 4
Blood pressure changes at different times in each group. Data expressed as mean ± standard deviation. T1 Baseline, T2 at induction, T3 30 min intraoperative, T4 postoperative
Figure 5
Figure 5
Sedation score between three groups at different study times. Data expressed as median (interquartile range). T1 ½h, T2 1 h, T3 2 h, T4 3 h, T5 6 h, T6 12 h postoperatively
Figure 6
Figure 6
Kaplan–Meier graph presenting first time to analgesia difference between the three groups

Similar articles

Cited by

References

    1. Anand VG, Kannan M, Thavamani A, Bridgit MJ. Effects of dexmedetomidine added to caudal ropivacaine in paediatric lower abdominal surgeries. Indian J Anaesth. 2011;55:340–6. - PMC - PubMed
    1. Ansermino M, Basu R, Vandebeek C, Montgomery C. Nonopioid additives to local anaesthetics for caudal blockade in children: A systematic review. Paediatr Anaesth. 2003;13:561–73. - PubMed
    1. Engelman E, Marsala C. Bayesian enhanced meta-analysis of post-operative analgesic efficacy of additives for caudal analgesia in children. Acta Anaesthesiol Scand. 2012;56:817–32. - PubMed
    1. De Oliveira GS, Jr, Almeida MD, Benzon HT, McCarthy RJ. Perioperative single dose systemic dexamethasone for postoperative pain: A meta-analysis of randomized controlled trials. Anesthesiology. 2011;115:575–88. - PubMed
    1. Waldron NH, Jones CA, Gan TJ, Allen TK, Habib AS. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: Systematic review and meta-analysis. Br J Anaesth. 2013;110:191–200. - PMC - PubMed