Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 1;19(1):533.
doi: 10.1186/s13063-018-2900-4.

Outcome measures in clinical trials of treatments for acute severe haemorrhage

Affiliations

Outcome measures in clinical trials of treatments for acute severe haemorrhage

Amy Brenner et al. Trials. .

Abstract

Background: Acute severe haemorrhage is a common complication of injury, childbirth, surgery, gastrointestinal pathologies and other medical conditions. Bleeding is a major cause of death, but patients also die from non-bleeding causes, the frequency of which varies by the site of haemorrhage and between populations. Because patients can bleed to death within hours, established interventions inevitably take priority over randomisation into a trial. These circumstances raise challenges in selecting appropriate outcome measures for clinical trials of haemostatic interventions.

Main body: We use data from three large randomised controlled trials in acute severe haemorrhage (CRASH-2, WOMAN and HALT-IT) to explore the strengths and limitations of outcome measures commonly used in trials of haemostatic treatments, including all-cause and cause-specific mortality, blood transfusion and surgical interventions. Many deaths following acute severe haemorrhage are due to patient comorbidities or complications rather than bleeding. If non-bleeding deaths are unaffected by a haemostatic intervention, even large trials will have low power to detect an effect on all-cause mortality. Due to the dilution from deaths unaffected or reduced by the trial treatment, all-cause mortality can also obscure important harmful effects. Additionally, because the relative contributions of different causes of death vary within and between patient populations, all-cause mortality is not generalisable. Different causes of death occur at different time intervals from bleeding onset, with bleeding deaths generally occurring early. Time-specific mortality can therefore be used as a proxy for cause in un-blinded trials where bias is a concern or in situations where cause of death cannot be assessed. Urgent treatment is critical, and so post-randomisation blood transfusion and surgery are often planned before or at the time of randomisation and therefore cannot be influenced by the trial treatment.

Conclusions: All-cause mortality has low power, lacks generalisability and can obscure harmful effects. Cause-specific mortality, such as death due to bleeding or thrombosis, avoids these drawbacks. In certain scenarios, time-specific mortality can be used as a proxy for cause-specific mortality. Blood transfusion and surgical procedures have limited utility as outcome measures in trials of haemostatic treatments.

Keywords: Blood transfusion; Clinical trial; Haemorrhage; Haemostasis; Mortality; Outcome measure; Trial methodology.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

We conducted the CRASH-2, WOMAN and HALT-IT trials in accordance with good clinical practice guidelines. The relevant ethics committees and regulatory agencies approved the consent procedures. We obtained informed consent from the patient if physical and mental capacity allowed. If a person could not give consent, we obtained proxy consent from a relative or representative. If no proxy was available, then if local regulation allowed, we deferred or waived the consent. In these cases, we told the patient about the trial as soon as possible and obtained consent for use of the data collected.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Primary cause of death by site of acute severe haemorrhage. Other causes of death in traumatic haemorrhage include head injury (39.8%). Other causes of death in gastrointestinal haemorrhage include cancer (10.3%) and liver disease (2.3%). Other causes of death in postpartum haemorrhage include eclampsia (2.1%) and pulmonary oedema (1.5%)
Fig. 2
Fig. 2
Hypothetical model of the effect of a haemostatic treatment on all-cause and cause-specific mortality. The treatment reduces the risk of death due to bleeding by 25% (relative risk (RR) = 0.75) but has no effect on non-bleeding deaths (RR = 1.00). The effect on all-cause mortality (RR = 0.90) is a weighted average of the effect on cause-specific deaths, weighted according to the relative contributions of each cause. Assuming the same number of patients in each trial arm, the RR can also be calculated as the ratio of events in the treatment and placebo groups
Fig. 3
Fig. 3
Effect of tranexamic acid on all-cause mortality and death due to bleeding in traumatic haemorrhage by time to treatment

References

    1. Hunt BJ, Allard S, Keeling D, Norfolk D, Stanworth SJ, Pendry K. A practical guideline for the haematological management of major haemorrhage. Br J Haematol. 2015;170:788–803. doi: 10.1111/bjh.13580. - DOI - PubMed
    1. Curry N, Hopewell S, Dorée C, Hyde C, Brohi K, Stanworth S. The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Crit Care. 2011;15:R92. doi: 10.1186/cc10096. - DOI - PMC - PubMed
    1. Parry Smith WR, Gallos ID, Williams HM, Widmer M, Angolkar M, Tobias A, et al. First-line uterotonics for treating postpartum haemorrhage: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2017;8:CD012754.
    1. Bennett C, Klingenberg SL, Langholz E, Gluud LL. Tranexamic acid for upper gastrointestinal bleeding. Cochrane Database Syst Rev. 2014;11:CD006640. - PMC - PubMed
    1. CRASH-2 trial collaborators. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32. doi: 10.1016/S0140-6736(10)60835-5. - DOI - PubMed