Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Oct 2;17(1):228.
doi: 10.1186/s12944-018-0871-9.

Lipolysis and antioxidant properties of cow and buffalo cheddar cheese in accelerated ripening

Affiliations
Comparative Study

Lipolysis and antioxidant properties of cow and buffalo cheddar cheese in accelerated ripening

Maryam Batool et al. Lipids Health Dis. .

Abstract

Background: Buffalo milk is the second largest source of milk on the globe, it is highly suitable for the preparation of mozzarella cheese, however, it is not suitable for the preparation of cheddar cheese due to high buffering capacity, low acid development, excessive syneresis, lower lipolysis that lead to lower sensory score. Accelerated ripening can enhance lipolysis and improve sensory characteristics of cheddar cheese. Lipolysis and antioxidant capacity of buffalo cheddar cheese in conventional ripening is not previously studied. Optimization of ripening conditions can lead to better utilization of buffalo milk in cheese industry.

Methods: Effect of accelerated ripening on lipolysis and antioxidant properties of cow and buffalo cheddar cheese were investigated. Cheddar cheese prepared from standardized (3.5% fat) cow and buffalo milk was subjected to conventional and accelerated ripening (4 °C and 12 °C) for a period of 120 days. Fatty acid profile, organic acids, free fatty acids, cholesterol, antioxidant activity and sensory characteristics were studied at 0, 40, 80 and 120 days of ripening.

Results: Fatty acid profile of cow and buffalo cheddar in conventional (120 days old) and accelerated ripening were different from each other (p < 0.05). Free fatty acids in 120 days old buffalo and control cheddar, in accelerated ripening were 0.55% and 0.62%. After accelerated ripening, cholesterol in buffalo and control cheddars were 16 and 72 mg/100 g. After accelerated ripening, concentrations of formic, pyruvic, lactic, acetic and citric acids in buffalo cheddar cheese were, 922, 136, 19,200, 468 and 2845 ppm. At the end of accelerated ripening (120 days), concentrations of formic, pyruvic, lactic, acetic and citric acids in cow cheddar cheese were 578, 95, 9600, 347 and 1015 ppm. Total antioxidant capacity of control cow and buffalo cheddar in accelerated ripening was 77.26 and 88.30%. Colour, flavour and texture score of rapid ripened 80 and 120 days old buffalo cheddar was not different from cow cheddar.

Conclusions: Results of this investigations showed that flavour profile buffalo cheddar subjected to accelerate ripening was similar to cow cheddar cheese. Accelerated ripening can be used for better utilization of buffalo milk in cheddar cheese industry.

Keywords: Buffalo milk; Cheddar cheese; Fatty acid profile; Lipolysis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Effect of Conventional Ripening (4 C) on Concentration of organic acids in buffalo cheddar Cheese
Fig. 2
Fig. 2
Effect of Conventional Ripening (4 °C) on Concentration of organic acids in cow cheddar Cheese
Fig. 3
Fig. 3
Fig. 2 Effect of Accelerated Ripening (12 °C) on Concentration of organic acids in Buffalo cheddar Cheese
Fig. 4
Fig. 4
Effect of Accelerated Ripening (12 °C) on Concentration of organic acids in Cow cheddar Cheese

Similar articles

Cited by

References

    1. CNIEL (Centre National Interprofessionnel de l'EconomieLaitière). L'économie laitière en chiffres. 2002;16:183.
    1. Ahmad S, Gaucher I, Rousseau F, Beaucher E, Piot M, Grongnet JF, Gaucheron F. Effects of acidification on physico-chemical characteristics of buffalo milk: a comparison with cow's milk. Food Chem. 2008;106:11–17. doi: 10.1016/j.foodchem.2007.04.021. - DOI
    1. Mahmood A, Usman S. A comparative study on the physicochemical parameters of milk samples collected from buffalo, cow, goat and sheep of Gujarat Pakistan. Pakistan J Nutr. 2010;9(12):1192–1197. doi: 10.3923/pjn.2010.1192.1197. - DOI
    1. Nadeem M, Hussain I, Abdullah M. Effect of feeding calcium salts of soybean oil fatty acids on physical and chemical characteristics of milk in cows. Indian J Anim Sci. 2013;83:811–814.
    1. Humma N, Sameen A, Zahoor T, Anjum M. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J Anim Plant Sci. 2013;23:62–74.

Publication types