Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb;97(2):190-202.
doi: 10.1111/imcb.12211. Epub 2018 Nov 12.

MicroRNA miR-181a/b-1 controls MAIT cell development

Affiliations

MicroRNA miR-181a/b-1 controls MAIT cell development

Samantha J Winter et al. Immunol Cell Biol. 2019 Feb.

Abstract

Mucosal-associated invariant T (MAIT) cells constitute a major fraction of innate-like T cells in humans with critical roles in defense against microbial pathogens and in maintaining mucosal integrity. However, the molecular mechanisms underlying MAIT cell development remain largely elusive. Here we investigated the role of miR-181a/b-1, a pair of microRNAs that serve as rheostat of TCR signal strength, in this process. Loss of miR-181a/b-1 in mice resulted in a profound arrest in early MAIT cell development. As a consequence, in the absence of miR-181a/b-1, thymic MAIT cells failed to acquire functional maturity based on expression of transcription factors PLZF, T-bet and RORγt. Temporal analysis of development using a molecular timer in combination with loss of miR-181a/b-1 revealed that MAIT cells complete functional maturation in the periphery and indicates that functionally mature MAIT cells in the thymus are long-term resident cells. Thus, our study provides insight into the dynamics of MAIT cell development in vivo. Of note, deletion of miR-181a/b-1 alone completely mirrored loss of all miRNAs.

Keywords: Development; MAIT cell; miR-181; miRNA; thymus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources