A Comparison of Machine Learning Classifiers for Energy-Efficient Implementation of Seizure Detection
- PMID: 30294263
- PMCID: PMC6158331
- DOI: 10.3389/fnsys.2018.00043
A Comparison of Machine Learning Classifiers for Energy-Efficient Implementation of Seizure Detection
Abstract
The closed-loop application of electrical stimulation via chronically implanted electrodes is a novel approach to stop seizures in patients with focal-onset epilepsy. To this end, an energy efficient seizure detector that can be implemented in an implantable device is of crucial importance. In this study, we first evaluated the performance of two machine learning algorithms (Random Forest classifier and support vector machine (SVM)) by using selected time and frequency domain features with a limited need of computational resources. Performance of the algorithms was further compared to a detection strategy implemented in an existing closed loop neurostimulation device for the treatment of epilepsy. The results show a superior performance of the Random Forest classifier compared to the SVM classifier and the reference approach. Next, we implemented the feature extraction and classification process of the Random Forest classifier on a microcontroller to evaluate the energy efficiency of this seizure detector. In conclusion, the feature set in combination with Random Forest classifier is an energy efficient hardware implementation that shows an improvement of detection sensitivity and specificity compared to the presently available closed-loop intervention in epilepsy while preserving a low detection delay.
Keywords: closed-loop intervention; epilepsy; intracranial EEG; low power microcontroller implementation; machine learning; seizure detection.
Figures








Similar articles
-
A Comparison of Energy-Efficient Seizure Detectors for Implantable Neurostimulation Devices.Front Neurol. 2022 Mar 4;12:703797. doi: 10.3389/fneur.2021.703797. eCollection 2021. Front Neurol. 2022. PMID: 35317247 Free PMC article.
-
Memory optimized random forest classifier for EEG seizure detection in implantable monitoring and closed-loop neurostimulation devices.J Neural Eng. 2025 May 27;22(3). doi: 10.1088/1741-2552/add76f. J Neural Eng. 2025. PMID: 40354815
-
Early seizure detection for closed loop direct neurostimulation devices in epilepsy.J Neural Eng. 2019 Aug;16(4):041001. doi: 10.1088/1741-2552/ab094a. Epub 2019 Feb 21. J Neural Eng. 2019. PMID: 30790780 Review.
-
Scalable and energy efficient seizure detection based on direct use of compressively-sensed EEG data on an ultra low power multi-core architecture.Comput Biol Med. 2020 Oct;125:104004. doi: 10.1016/j.compbiomed.2020.104004. Epub 2020 Sep 17. Comput Biol Med. 2020. PMID: 33011647
-
Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.Epilepsy Behav. 2014 Aug;37:291-307. doi: 10.1016/j.yebeh.2014.06.023. Epub 2014 Aug 29. Epilepsy Behav. 2014. PMID: 25174001 Review.
Cited by
-
A review of epileptic seizure detection using machine learning classifiers.Brain Inform. 2020 May 25;7(1):5. doi: 10.1186/s40708-020-00105-1. Brain Inform. 2020. PMID: 32451639 Free PMC article. Review.
-
Prediction of Seizure Recurrence. A Note of Caution.Front Neurol. 2021 May 13;12:675728. doi: 10.3389/fneur.2021.675728. eCollection 2021. Front Neurol. 2021. PMID: 34054713 Free PMC article.
-
Time-Series Generative Adversarial Network Approach of Deep Learning Improves Seizure Detection From the Human Thalamic SEEG.Front Neurol. 2022 Feb 16;13:755094. doi: 10.3389/fneur.2022.755094. eCollection 2022. Front Neurol. 2022. PMID: 35250803 Free PMC article.
-
A Comparison of Energy-Efficient Seizure Detectors for Implantable Neurostimulation Devices.Front Neurol. 2022 Mar 4;12:703797. doi: 10.3389/fneur.2021.703797. eCollection 2021. Front Neurol. 2022. PMID: 35317247 Free PMC article.
-
Decoding Intracranial EEG With Machine Learning: A Systematic Review.Front Hum Neurosci. 2022 Jun 27;16:913777. doi: 10.3389/fnhum.2022.913777. eCollection 2022. Front Hum Neurosci. 2022. PMID: 35832872 Free PMC article.
References
-
- Bottou L., Lin C.-J. (2007). “Support vector machine solvers,” in Large Scale Kernel Machines, eds Bottou L., Chapelle O., Decost D., Weston J. (Cambridge, MA: MIT Press; ), 301–320. Available online at: https://leon.bottou.org/papers/bottou-lin-2006
-
- Breiman L. (1996). Bagging predictors. Mach. Learn. 24, 123–140. 10.1007/bf00058655 - DOI
-
- Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. 10.1023/A:1010933404324 - DOI
LinkOut - more resources
Full Text Sources