Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2019 Feb;6(1):80-88.
doi: 10.1002/ehf2.12368. Epub 2018 Oct 8.

Early urine electrolyte patterns in patients with acute heart failure

Affiliations
Observational Study

Early urine electrolyte patterns in patients with acute heart failure

Sean P Collins et al. ESC Heart Fail. 2019 Feb.

Abstract

Aims: We conducted a prospective study of emergency department (ED) patients with acute heart failure (AHF) to determine if worsening HF (WHF) could be predicted based on urinary electrolytes during the first 1-2 h of ED care. Loop diuretics are standard therapy for AHF patients. A subset of patients hospitalized for AHF will develop a blunted natriuretic response to loop diuretics, termed diuretic resistance, which often leads to WHF. Early detection of diuretic resistance could facilitate escalation of therapy and prevention of WHF.

Methods and results: Patients were eligible if they had an ED AHF diagnosis, had not yet received intravenous diuretics, had a systolic blood pressure > 90 mmHg, and were not on dialysis. Urine electrolytes and urine output were collected at 1, 2, 4, and 6 h after diuretic administration. Worsening HF was defined as clinically persistent or WHF requiring escalation of diuretics or administration of intravenous vasoactives after the ED stay. Of the 61 patients who qualified in this pilot study, there were 10 (16.3%) patients who fulfilled our definition of WHF. At 1 h after diuretic administration, patients who developed WHF were more likely to have low urinary sodium (9.5 vs. 43.0 mmol; P < 0.001) and decreased urine sodium concentration (48 vs. 80 mmol/L; P = 0.004) than patients without WHF. All patients with WHF had a total urine sodium of <35.4 mmol at 1 h (100% sensitivity and 60% specificity).

Conclusions: One hour after diuretic administration, a urine sodium excretion of <35.4 mmol was highly suggestive of the development of WHF. These relationships require further testing to determine if early intervention with alternative agents can prevent WHF.

Keywords: Acute heart failure; Diuretic resistance; Emergency department; Urine electrolytes; Worsening heart failure.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Patient identification and enrolment. AHF, acute heart failure; BP, blood pressure; ED, emergency department.
Figure 2
Figure 2
Urinary measures of natriuresis and diuresis in patients without and with worsening heart failure (WHF): (A) urine sodium output, (B) urine output, (C) urine sodium concentration, and (D) urine sodium/potassium ratio.
Figure 3
Figure 3
Receiver operating characteristic curves for (A) urine sodium concentration, (B) urine sodium output, (C) urine output, and (D) predicted urine sodium concentration at 6 h, during the first hour after diuretic administration to discriminate between patients with and without worsening heart failure. AUC, area under the curve.

Similar articles

Cited by

References

    1. Adams KF Jr, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, Berkowitz RL, Galvao M, Horton DP. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 2005; 149: 209–216. - PubMed
    1. Ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure—pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015; 12: 184–192. - PubMed
    1. O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalan R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Mendez GF, Metra M, Mittal S, Oh BH, Pereira NL, Ponikowski P, Wilson WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 2011; 365: 32–43. - PubMed
    1. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Ponikowski P, Unemori E, Voors AA, Adams KF Jr, Dorobantu MI, Grinfeld LR, Jondeau G, Marmor A, Masip J, Pang PS, Werdan K, Teichman SL, Trapani A, Bush CA, Saini R, Schumacher C, Severin TM, Metra M. Serelaxin, recombinant human relaxin‐2, for treatment of acute heart failure (RELAX‐AHF): a randomised, placebo‐controlled trial. Lancet 2013; 381: 29–39. - PubMed
    1. Packer M, O'Connor C, McMurray JJ, Wittes J, Abraham WT, Anker SD, Dickstein K, Filippatos G, Holcomb R, Krum H, Maggioni AP, Mebazaa A, Peacock WF, Petrie MC, Ponikowski P, Ruschitzka F, van Veldhuisen DJ, Kowarski LS, Schactman M, Holzmeister J. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med 2017; 376: 1956–1964. - PubMed

Publication types