Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov;50(11):1505-1513.
doi: 10.1038/s41588-018-0241-6. Epub 2018 Oct 8.

Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

Anubha Mahajan  1   2 Daniel Taliun  3 Matthias Thurner  4   5 Neil R Robertson  4   5 Jason M Torres  4 N William Rayner  4   5   6 Anthony J Payne  4 Valgerdur Steinthorsdottir  7 Robert A Scott  8 Niels Grarup  9 James P Cook  10 Ellen M Schmidt  3 Matthias Wuttke  11 Chloé Sarnowski  12 Reedik Mägi  13 Jana Nano  14 Christian Gieger  15   16 Stella Trompet  17   18 Cécile Lecoeur  19 Michael H Preuss  20 Bram Peter Prins  6 Xiuqing Guo  21 Lawrence F Bielak  22 Jennifer E Below  23 Donald W Bowden  24   25   26 John Campbell Chambers  27   28   29   30   31 Young Jin Kim  32 Maggie C Y Ng  24   25   26 Lauren E Petty  23 Xueling Sim  33 Weihua Zhang  27   28 Amanda J Bennett  5 Jette Bork-Jensen  9 Chad M Brummett  34 Mickaël Canouil  19 Kai-Uwe Ec Kardt  35 Krista Fischer  13 Sharon L R Kardia  22 Florian Kronenberg  36 Kristi Läll  13   37 Ching-Ti Liu  12 Adam E Locke  38   39 Jian'an Luan  8 Ioanna Ntalla  40 Vibe Nylander  5 Sebastian Schönherr  36 Claudia Schurmann  20 Loïc Yengo  19 Erwin P Bottinger  20 Ivan Brandslund  41   42 Cramer Christensen  43 George Dedoussis  44 Jose C Florez  45   46   47   48 Ian Ford  49 Oscar H Franco  14 Timothy M Frayling  50 Vilmantas Giedraitis  51 Sophie Hackinger  6 Andrew T Hattersley  52 Christian Herder  16   53 M Arfan Ikram  14 Martin Ingelsson  51 Marit E Jørgensen  54   55 Torben Jørgensen  56   57   58 Jennifer Kriebel  15   16 Johanna Kuusisto  59 Symen Ligthart  14 Cecilia M Lindgren  4   60   61 Allan Linneberg  56   62   63 Valeriya Lyssenko  64   65 Vasiliki Mamakou  66 Thomas Meitinger  67   68   69 Karen L Mohlke  70 Andrew D Morris  71   72 Girish Nadkarni  73 James S Pankow  74 Annette Peters  16   69   75 Naveed Sattar  76 Alena Stančáková  59 Konstantin Strauch  77   78 Kent D Taylor  21 Barbara Thorand  16   75 Gudmar Thorleifsson  7 Unnur Thorsteinsdottir  7   79 Jaakko Tuomilehto  80   81   82   83 Daniel R Witte  84   85 Josée Dupuis  12   86 Patricia A Peyser  22 Eleftheria Zeggini  6 Ruth J F Loos  20   87 Philippe Froguel  19   88 Erik Ingelsson  89   90 Lars Lind  91 Leif Groop  64   92 Markku Laakso  59 Francis S Collins  93 J Wouter Jukema  18 Colin N A Palmer  94 Harald Grallert  15   16   95   96 Andres Metspalu  13 Abbas Dehghan  14   27   31 Anna Köttgen  11 Goncalo R Abecasis  3 James B Meigs  45   48   97 Jerome I Rotter  21   98 Jonathan Marchini  4   99 Oluf Pedersen  9 Torben Hansen  9   100 Claudia Langenberg  8 Nicholas J Wareham  8 Kari Stefansson  7   79 Anna L Gloyn  4   5   101 Andrew P Morris  4   10   13 Michael Boehnke  3 Mark I McCarthy  102   103   104
Affiliations

Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

Anubha Mahajan et al. Nat Genet. 2018 Nov.

Abstract

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).

PubMed Disclaimer

Figures

Figure 1
Figure 1. Manhattan plots of the sex-combined BMI-unadjusted and adjusted meta-analysis for T2D.
a, Manhattan plot (top panel) of genome-wide association results for T2D without BMI adjustment from meta-analysis of up to 71,124 cases and 824,006 controls. The association p-value (on -log10 scale) for each SNP (y-axis) is plotted against the genomic position (NCBI Build 37; x-axis). Association signals that reached genome-wide significance (p<5x10-8) are shown in purple if novel. b, Manhattan plot (bottom panel) of genome-wide association results for T2D with BMI adjustment from meta-analysis of up to 50,409 cases and 523,897 controls. Novel association signals that reached genome-wide significance (p<5x10-8) only in the BMI-unadjusted analysis are shown in orange.
Figure 2
Figure 2. Comparison of estimated T2D effect size between BMI-adjusted and unadjusted models.
Z-score for each of the 403 distinct signals from BMI-unadjusted analysis (50,791 cases and 526,121 controls; x-axis) is plotted against the z-score from the BMI-adjusted analysis (50,402 cases and 523,888 controls; y-axis). Variants that display higher T2D effect size in BMI-adjusted analysis are shown in red and variants with higher T2D effects in BMI-unadjusted analysis are shown in blue. Diameter of the circle is proportional to -log10 heterogeneity p-value.
Figure 3
Figure 3. Summary of fine-mapped associations.
a, Distinct association signals. A single signal at 151 loci, and 2-10 signals at 92. b, Number of variants in genetic and functional 99% credible sets. Eighteen and 23 signals were mapped to a single variant in genetic and functional credible sets, respectively. c, Distribution of the posterior probability of association of the variants in credible sets.
Figure 4
Figure 4. Comparison of fine-mapping resolution at 83 distinct signals.
The number of variants included in the 99% credible set for each of the 83 distinct signals constructed using meta-analysis of GWAS data imputed using the 1000G multi-ethnic reference panel (26,676 T2D cases and 132,532 controls) (x-axis; logarithmic scale) is plotted against those (y-axis; logarithmic scale) derived using HRC-based imputation (74,124 T2D cases and 824,006 controls). Inset presents the same plot but with linear scales.
Figure 5
Figure 5. The relationship between effect size and minor allele frequency.
Conditional and joint analysis effect size (y-axis) and minor allele frequency (x-axis) for 403 conditionally independent SNPs. Previously-reported T2D associated variants are shown in green and novel variants are shown in purple. Stars and circles represent the “strongest regional lead at a locus” and “lead variants for secondary signals”, respectively.
Figure 6
Figure 6. Comparison of posterior probability of association for each variant with and without incorporation enrichment information.
Posterior probability of association from genetic credible sets (y-axis) and fGWAS analysis (x-axis) for each variant included in the 99% credible sets.

Comment in

References

    1. Scott RA, et al. An Expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66:2888–2902. - PMC - PubMed
    1. Zhao W, et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat Genet. 2017;49:1450–1457. - PMC - PubMed
    1. Mahajan A, et al. Refining the accuracy of validated target identification through coding variant fine-mapping In type 2 diabetes. Nat Genet. (accepted) - PMC - PubMed
    1. McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83. - PMC - PubMed
    1. Jonsson H, et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci Data. 2017;4 170115. - PMC - PubMed

Publication types

MeSH terms