Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan:214:821-829.
doi: 10.1016/j.chemosphere.2018.09.141. Epub 2018 Sep 27.

Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin: Interaction models and adsorption mechanisms

Affiliations

Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin: Interaction models and adsorption mechanisms

Shaogang Liu et al. Chemosphere. 2019 Jan.

Abstract

This study describes the adsorption performance of a novel ethylenediamine rosin-based resin (EDAR) for several industrially-important phenolic compounds. Its removal of 4-nitrophenol (4-NP) from water was comparable to or better than many commercial resins, although it was less effective with other phenols (i. e., phenol, 2,4-dichlorophenol, 4-chlorophenol, and 4-methylphenol). Experimental conditions for batch adsorption of 4-NP by EDAR are evaluated, the adsorption kinetics is well described by the pseudo-second-order model (R2 > 0.99) and isotherm follows the Langmuir isotherm model (R2 > 0.99), with the maximum monolayer adsorption capacity of 82 mg g-1 at pH 6.0 and 293 K. The thermodynamic parameters indicate that the adsorption is spontaneous and endothermic. Also, quantum chemistry calculations indicate involvement of hydrogen-bonding between 4-NP and amino groups of EDAR. 4-NP was efficiently desorbed from the loaded EDAR resin by 0.2 M HCl, and the resin could be recycled with only a small decrease in its initial adsorption capacities. Thus, EDAR is a promising adsorbent for the removal of 4-NP during water treatment.

Keywords: Adsorption mechanism; Density-functional-theory; Ethylenediamine rosin-based resin; Isotherm; Phenolic compounds.

PubMed Disclaimer

LinkOut - more resources