Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep;37(15):4006-4018.
doi: 10.1080/07391102.2018.1533497. Epub 2019 Jan 13.

Investigation of activation mechanism and conformational stability of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxybenzamide and N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide in the: active site of p300 histone acetyl transferase enzyme by molecular dynamics and binding free energy studies

Affiliations

Investigation of activation mechanism and conformational stability of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxybenzamide and N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide in the: active site of p300 histone acetyl transferase enzyme by molecular dynamics and binding free energy studies

Magudeeswaran Sivanandam et al. J Biomol Struct Dyn. 2019 Sep.

Abstract

The CBP (CREB-binding protein) and p300 are related to transcriptional coactivator family and are involved in several post-translational modifications, in which the acetylation is an important factor because it commences the transcription process. Experimental studies report that CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide) and CTB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxybenzamide) are good activators of p300 HAT enzyme, but yet, the molecular mechanism of their activation is not explored. The present study pertains to determine the intermolecular interactions, stability and binding free energy of CTB and CTPB from the molecular docking, molecular dynamics (MD) simulation and binding free energy calculation. The docking studies of the molecules reveal that the docking score of CTPB (-15.64 kcal/mol) is higher than that of CTB (-12.30 kcal/mol); on the contrary, CTB forms a strong interaction with the key residues of catalytic site (Tyr1467 and Trp1436) compared with CTPB. The MD simulation shows the stability of both molecules in the active site of p300 and their interactions. Furthermore, both docking and MD simulation studies of CTB confirm that it forms expected key interactions and retain the interactions with the active site amino acid residues of p300 when compared with CTPB. For this reason, the CTB recruits more acetyl-CoA in the active site of p300 compared with CTPB; it leads to activate the acetylation process; hence, CTB may be a best activator than CTPB. The binding free energy value of CTPB (-24.79 ± 2.38 kcal/mol) is higher when compared with that of CTB (-12.14 ± 1.30 kcal/mol) molecule; perhaps, the interaction of pentadecyl chain of CTPB with p300, whereas in CTB, such a group is absent. Communicated by Ramaswamy H. Sarma.

Keywords: Quantum chemical calculations; binding free energy; molecular docking; molecular dynamics simulation; normal mode analysis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources