Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Dec 15;240(3):789-95.
doi: 10.1042/bj2400789.

Studies on the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicals in organic solvents

Studies on the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicals in organic solvents

M J Davies et al. Biochem J. .

Abstract

Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish between the carbon-centred, alkoxyl, and peroxyl radicals produced during the photolytic decomposition of hydroperoxides. Photolysis of tert-butyl and cumene hydroperoxides, and peroxidized fatty acids, in toluene, with low levels of u.v. light, is shown to lead to the initial production of alkoxyl radicals by homolysis of the oxygen-oxygen bond. Subsequent reaction of these radicals with excess hydroperoxide leads, by hydrogen abstraction, to the production of peroxyl radicals that can be detected as their corresponding adducts with the spin trap. Subsequent breakdown of these adducts produces alkoxyl radicals and a further species that is believed to be the oxidized spin-trap radical 5,5-dimethyl-1-pyrrolidone-2-oxyl. No evidence was obtained at low hydroperoxide concentrations, with either the cumene or lipid alkoxyl radicals, for the occurrence of beta-scission reactions; the production of low levels of carbon-centred radicals is believed to be due to the alternative reactions of hydrogen abstraction, ring closure, and/or 1,2 hydrogen shifts. Analogous experiments with 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO) led only to the trapping of alkoxyl radicals with no evidence for peroxyl radical adducts, this is presumably due to a decreased rate of radical addition because of increased steric hindrance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Can J Biochem. 1969 May;47(5):485-92 - PubMed
    1. Arch Biochem Biophys. 1971 Nov;147(1):14-27 - PubMed
    1. Biochim Biophys Acta. 1975 Jan 23;377(1):71-9 - PubMed
    1. Biochem Biophys Res Commun. 1976 Jun 7;70(3):893-9 - PubMed
    1. Mol Pharmacol. 1979 Sep;16(2):676-85 - PubMed

Publication types