Thyroid hormone signaling specifies cone subtypes in human retinal organoids
- PMID: 30309916
- PMCID: PMC6249681
- DOI: 10.1126/science.aau6348
Thyroid hormone signaling specifies cone subtypes in human retinal organoids
Abstract
The mechanisms underlying specification of neuronal subtypes within the human nervous system are largely unknown. The blue (S), green (M), and red (L) cones of the retina enable high-acuity daytime and color vision. To determine the mechanism that controls S versus L/M fates, we studied the differentiation of human retinal organoids. Organoids and retinas have similar distributions, expression profiles, and morphologies of cone subtypes. S cones are specified first, followed by L/M cones, and thyroid hormone signaling controls this temporal switch. Dynamic expression of thyroid hormone-degrading and -activating proteins within the retina ensures low signaling early to specify S cones and high signaling late to produce L/M cones. This work establishes organoids as a model for determining mechanisms of human development with promising utility for therapeutics and vision repair.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Figures




Similar articles
-
Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids.Vitam Horm. 2021;116:51-90. doi: 10.1016/bs.vh.2021.03.001. Epub 2021 Mar 10. Vitam Horm. 2021. PMID: 33752828 Free PMC article.
-
Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors.J Neurosci. 2010 Mar 3;30(9):3347-57. doi: 10.1523/JNEUROSCI.5267-09.2010. J Neurosci. 2010. PMID: 20203194 Free PMC article.
-
Thyroid hormone accelerates opsin expression during early photoreceptor differentiation and induces opsin switching in differentiated TRα-expressing cones of the salmonid retina.Dev Dyn. 2010 Oct;239(10):2700-13. doi: 10.1002/dvdy.22392. Dev Dyn. 2010. PMID: 20730870
-
Thyroid Hormone Signaling in Retinal Development, Survival, and Disease.Vitam Horm. 2018;106:333-349. doi: 10.1016/bs.vh.2017.05.001. Epub 2017 Jun 19. Vitam Horm. 2018. PMID: 29407441 Review.
-
Thyroid Hormone Signaling and Cone Photoreceptor Viability.Adv Exp Med Biol. 2016;854:613-8. doi: 10.1007/978-3-319-17121-0_81. Adv Exp Med Biol. 2016. PMID: 26427466 Review.
Cited by
-
Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development.Dev Cell. 2020 May 18;53(4):473-491.e9. doi: 10.1016/j.devcel.2020.04.009. Epub 2020 May 7. Dev Cell. 2020. PMID: 32386599 Free PMC article.
-
Single-cell sequencing of individual retinal organoids reveals determinants of cell-fate heterogeneity.Cell Rep Methods. 2023 Aug 9;3(8):100548. doi: 10.1016/j.crmeth.2023.100548. eCollection 2023 Aug 28. Cell Rep Methods. 2023. PMID: 37671011 Free PMC article.
-
Characterization and allogeneic transplantation of a novel transgenic cone-rich donor mouse line.Exp Eye Res. 2021 Sep;210:108715. doi: 10.1016/j.exer.2021.108715. Epub 2021 Jul 31. Exp Eye Res. 2021. PMID: 34343570 Free PMC article.
-
Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling.Protein Cell. 2023 Aug 1;14(8):603-617. doi: 10.1093/procel/pwad007. Protein Cell. 2023. PMID: 36930538 Free PMC article.
-
Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system.Nat Commun. 2023 Sep 18;14(1):5775. doi: 10.1038/s41467-023-41419-y. Nat Commun. 2023. PMID: 37723149 Free PMC article.
References
-
- Viets K, Eldred K, Johnston RJ Jr., Mechanisms of photoreceptor patterning in vertebrates and invertebrates. Trends Genet 32, 638–659 (2016). doi: 10.1016/j.tig.2016.07.004; pmid: - DOI - PMC - PubMed
-
- Nathans J, Thomas D, Hogness DS, Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232, 193–202 (1986). doi: 10.1126/science.2937147; pmid: - DOI - PubMed
-
- Vollrath D, Nathans J, Davis RW, Tandem array of human visual pigment genes at Xq28. Science 240, 1669–1672 (1988). doi: 10.1126/science.2837827; pmid: - DOI - PubMed
-
- Wang Y et al., A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429–440 (1992). doi: 10.1016/0896-6273(92)90181-0; pmid: - DOI - PubMed
-
- Smallwood PM, Wang Y, Nathans J, Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc. Natl. Acad. Sci. U.S.A 99, 1008–1011 (2002). doi: 10.1073/pnas.022629799; pmid: - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials