Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Apr 15;138(8):2626-32.

LTB4 induced activation signals and responses in neutrophils are short-lived compared to formylpeptide

  • PMID: 3031161
Comparative Study

LTB4 induced activation signals and responses in neutrophils are short-lived compared to formylpeptide

G M Omann et al. J Immunol. .

Abstract

Leukotriene B4 (LTB4) was shown to be a potent stimulator of neutrophil actin polymerization as detected by right-angle light scatter and rhodamine-phalloidin staining of F-actin. When we compared the kinetics of this neutrophil cytoskeletal response to the chemoattractants formylpeptide and LTB4, we observed that the response to LTB4 was markedly shorter-lived. To understand the basis of this result, we re-examined the kinetics of superoxide generation, elastase release, intracellular calcium elevation, and phosphoinositide metabolism in neutrophils stimulated with LTB4 and N-formylhexapeptide. LTB4 was relatively inefficient in producing superoxide and in releasing elastase. Although both responses were initiated with similar rapidity, they turned off sooner with LTB4 as compared with N-formylhexapeptide stimulation. Intracellular calcium elevation, a signal that is necessary for superoxide generation and degranulation, was of similar magnitude but of shorter duration in response to LTB4 as compared with the N-formylhexapeptide. The LTB4-induced rise of phosphatidic acid also was not sustained as long as the N-formylhexapeptide-induced increase. Prior exposure of neutrophils to LTB4 did not inhibit subsequent stimulation of superoxide generation by N-formylhexapeptide. Thus, the inability of LTB4 to stimulate superoxide generation was not due to LTB4-induced global inhibitory signals. The deficiency in LTB4-induced superoxide and elastase responses may be related to short-lived LTB4-induced activation signals and/or the number of receptors contributing to these responses.

PubMed Disclaimer

Publication types

MeSH terms