Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 12;19(1):369.
doi: 10.1186/s12891-018-2276-3.

Epidemiology, treatment and mortality of trochanteric and subtrochanteric hip fractures: data from the Swedish fracture register

Affiliations

Epidemiology, treatment and mortality of trochanteric and subtrochanteric hip fractures: data from the Swedish fracture register

Leif Mattisson et al. BMC Musculoskelet Disord. .

Abstract

Background: Hip fractures are a major worldwide public health problem and includes two main types of fractures: the intracapsular (cervical) and the extracapsular (trochanteric and subtrochanteric) fractures. The aim of this study on patients with trochanteric and subtrochanteric hip fractures was to describe the epidemiology, treatment and outcome in terms of mortality within the context of a large register study.

Methods: A descriptive epidemiological register study including patients registered in the national Swedish Fracture Register from January 2014 to December 2016. Inclusion criteria were all primary surgically treated traumatic non-pathological trochanteric and subtrochanteric femoral fractures in patients aged 18 years and above. Individual patient data (age, gender, injury location, injury cause, fracture type, treatment and timing of surgery) were retrieved from the register database. Mortality data was obtained via linkage to the Swedish Death Register.

Results: A total of 10,548 consecutive patients were identified and included in the study. The mean (±SD) age for all patients was 82 ± 11 years and the majority of the patients were females (69%). Most of the fractures were caused by a fall at the same level (83%) at the patients' accommodation (75%). Fractures were classified using the AO/OTA classification as 31-A1 in 29%, as 31-A2 in 49% and as 31-A3 in 22% of the cases. The most commonly used implant was a short antegrade intramedullary nail (42%), followed by a plate with sliding hip screw (37%). With increasing fracture complexity, the proportion of intramedullary nails was increasing, and also the use of long versus short nails. The majority of the patients were operated within 36 h (90%). There was a higher mortality at 30 days and 1 year for males, and for all those who were delayed to surgery > 36 h.

Conclusion: Safety measures to prevent fall at elderly patient's accommodation might be a way to reduce the number of trochanteric and subtrochanteric hip fractures. Surgery as soon as possible without delay should be considered to reduce the mortality rate. The selection of surgical methods depends on the fracture complexity.

Keywords: Epidemiology; Hip fracture; Register study; Surgical treatment; Trochanteric fracture.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study was performed according to the Helsinki declaration and approved by the Regional Ethics Committee in Stockholm (ref number 2018/204–31) at 21 February 2018. Informed consent was waived because of the retrospective design of this study that did not involve any additional risk for patients.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Distribution of trochanteric and subtrochanteric femoral fractures by age and gender
Fig. 2
Fig. 2
Monthly distribution of trochanteric and subtrochanteric femoral fractures
Fig. 3
Fig. 3
Fracture groups as presented in the SFR. According to AO/OTA classification of trochanteric and subtrochanteric femoral fractures. The use of the figure in this study has been approved by the SFR: 31-A1 Simple trochanteric fractures. 31-A2 Multifragmented trochanteric fractures. 31-A3 Trochanteric reverse oblique and subtrochanteric fractures.
Fig. 4
Fig. 4
Fracture type according to the AO/OTA classification in relation to treatment
Fig. 5
Fig. 5
Comparison of 1-year mortality between males and females for different age-groups

References

    1. Cooper C, Campion G, Melton LJ., 3rd Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–289. doi: 10.1007/BF01623184. - DOI - PubMed
    1. Cheng SY, Levy AR, Lefaivre KA, Guy P, Kuramoto L, Sobolev B. Geographic trends in incidence of hip fractures: a comprehensive literature review. Osteoporos Int. 2011;22(10):2575–2586. doi: 10.1007/s00198-011-1596-z. - DOI - PubMed
    1. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997;7(5):407–413. doi: 10.1007/PL00004148. - DOI - PubMed
    1. Brunner LC, Eshilian-Oates L, Kuo TY. Hip fractures in adults. Am Fam Physician. 2003;67(3):537–542. - PubMed
    1. Endo Y, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ. Gender differences in patients with hip fracture: a greater risk of morbidity and mortality in men. J Orthop Trauma. 2005;19(1):29–35. doi: 10.1097/00005131-200501000-00006. - DOI - PubMed

MeSH terms