Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Dec 20;553(1-2):120-131.
doi: 10.1016/j.ijpharm.2018.09.046. Epub 2018 Oct 11.

Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol

Affiliations
Comparative Study

Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol

Augustine Lalloz et al. Int J Pharm. .

Abstract

We investigated the influence of nanoparticle (NP) surface composition on different aspects of skin delivery of a lipophilic drug: chemical stability, release and skin penetration. Cholecalciferol was chosen as a labile model drug. Poly(lactic acid) (PLA)-based NPs without surface coating, with a non-ionic poly(ethylene glycol) (PEG) coating, or with a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) coating were prepared using flash nanoprecipitation. Process was optimized to obtain similar hydrodynamic diameters. Polymeric NPs were compared to non-polymeric cholecalciferol formulations. Cholecalciferol stability in aqueous medium was improved by polymeric encapsulation with a valuable effect of a hydrophilic coating. However, the in vitro release of the drug was found independent of the presence of any polymer, as for the drug penetration in an intact skin model. Such tendency was not observed in impaired skin since, when stratum corneum was removed, we found that a neutral hydrophilic coating around NPs reduced drug penetration compared to pure drug NPs and bare PLA NPs. The nature of the hydrophilic block (PEG or PMPC) had however no impact. We hypothesized that NPs surface influenced drug penetration in impaired skin due to different electrostatic interactions between NPs and charged skin components of viable skin layers.

Keywords: Cholecalciferol; Drug stability; Flash nanoprecipitation; Impaired skin; Nanoparticle surface; Skin penetration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources