Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan:130:115-120.
doi: 10.1016/j.ympev.2018.10.002. Epub 2018 Oct 11.

Conservation of mitochondrial genome arrangements in brittle stars (Echinodermata, Ophiuroidea)

Affiliations

Conservation of mitochondrial genome arrangements in brittle stars (Echinodermata, Ophiuroidea)

Matthew P Galaska et al. Mol Phylogenet Evol. 2019 Jan.

Abstract

Brittle stars are conspicuous members of benthic ecosystems, fill many ecological niches and are the most speciose of all classes of echinoderms. With high levels of biodiversity, elucidating the evolutionary history of this group is important. Understanding of higher-level relationships within Ophiuroidea has been aided by multilocus nuclear data and DNA barcoding. However, the degree of consistency between mitochondrial and nuclear data within ophiuroids remains unclear and deserves further assessment. In this study, 17 mitochondrial genomes spanning the taxonomic breadth of Ophiuroidea were utilized to explore evolutionary relationships through maximum likelihood analyses, Bayesian inference and comparative assessment of gene order. Our phylogenetic analyses, based on both nucleotide and amino acid residues, support recent findings based on multilocus nuclear data and morphology, in that the brittle star clades Ophintegrida and Euryophiurida were recovered as monophyletic with the latter comprising Euyalida, Ophiuridae and Ophiopyrgidae. Only three different arrangements of the 13 protein coding and 2 ribosomal RNA genes were observed. As expected, tRNA genes were more likely to have undergone rearrangement but the order of all 37 genes was found to be conserved in all sampled Euryalida and Ophiuridae. Both Euryalida and the clade comprised of Ophiuridae and Ophiopyrgidae, each had their own conserved rearrangement of protein coding genes and ribosomal genes, after divergence from their last common ancestor. Euryalida has a rearrangement of the two ribosomal RNA genes, rrnS and rrnL, in contrast to Ophiuridae and Ophiopyrgidae, which had an inversion of the genes nad1, nad2, and cob relative to Ophintegrida. Further, our data support the gene order found in all sampled Euryalida as the most likely ancestral order for all Ophiuroidea.

Keywords: Brittle star; Mitochondrial genome; Ophiuroidea; mtDNA.

PubMed Disclaimer

Publication types

LinkOut - more resources