Fluorescent Probes Based on π-Conjugation Modulation between Hemicyanine and Coumarin Moieties for Ratiometric Detection of pH Changes in Live Cells with Visible and Near-infrared Channels
- PMID: 30319177
- PMCID: PMC6178979
- DOI: 10.1016/j.snb.2018.02.168
Fluorescent Probes Based on π-Conjugation Modulation between Hemicyanine and Coumarin Moieties for Ratiometric Detection of pH Changes in Live Cells with Visible and Near-infrared Channels
Abstract
We report two ratiometric fluorescent probes based on π-conjugation modulation between coumarin and hemicyanine moieties for sensitive ratiometric detection of pH alterations in live cells by monitoring visible and near-infrared fluorescence changes. In a π-conjugation modulation strategy, a coumarin dye was conjugated to a near-infrared hemicyanine dye via a vinyl connection while lysosome-targeting morpholine ligand and o-phenylenediamine residue were introduced to the hemicyanine dye to form closed spirolactam ring structures in probes A and B, respectively. The probes show only visible fluorescence of the coumarin moiety under physiological and basic conditions because the hemicyanine moieties retain their closed spirolactam ring structures. However, decrease of pH to acidic condition causes spirolactam ring opening, and significantly enhances π-conjugation within the probes, thus generating new near-infrared fluorescence peaks of the hemicyanine at 755 nm and 740 nm for probes A and B, respectively. Moreover, the probes display ratiometric fluorescence response to pH with decreases of the coumarin fluorescence and increases of the hemicyanine fluorescence when pH changes from 7.4 to 2.5. The probes are fully capable of imaging pH changes in live cells with good ratiometric responses in visible and near-infrared channels, and effectively avoid fluorescence blind spots under neutral and basic pH conditions - an issue that typical intensity-based pH fluorescent probes run into. The probe design platform reported herein can be easily applied to prepare a variety of ratiometric fluorescent probes for detection of biological thiols, metal ions, reactive oxygen and nitrogen species by introducing appropriate functional groups to hemicyanine moiety.
Keywords: Fluorescent probe; Ratiometric imaging; live cells; near-infrared emission; pH.
Figures












References
-
- Zhang YY, Li SL, Zhao ZW. Using Nanoliposomes To Construct a FRET-Based Ratiometric Fluorescent Probe for Sensing Intracellular pH Values. Anal Chem. 2016;88:12380–5. - PubMed
-
- Jia XT, Chen QQ, Yang YF, Tang Y, Wang R, Xu YF, et al. FRET-Based Mito-Specific Fluorescent Probe for Ratiometric Detection and Imaging of Endogenous Peroxynitrite: Dyad of Cy3 and Cy5. J Am Chem Soc. 2016;138:10778–81. - PubMed
-
- Song GJ, Bai SY, Dai X, Cao XQ, Zhao BX. A ratiometric lysosomal pH probe based on the imidazo 1,5-a pyridine-rhodamine FRET and ICT system. RSC Adv. 2016;6:41317–22.
-
- Zhang YR, Meng N, Miao JY, Zhao BX. A Ratiometric Fluorescent Probe Based on a Through-Bond Energy Transfer (TBET) System for Imaging HOCl in Living Cells. Chem Eur J. 2015;21:19058–63. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous