Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep 27:9:2147.
doi: 10.3389/fimmu.2018.02147. eCollection 2018.

Epidemiology and Immune Pathogenesis of Viral Sepsis

Affiliations
Review

Epidemiology and Immune Pathogenesis of Viral Sepsis

Gu-Lung Lin et al. Front Immunol. .

Abstract

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment.

Keywords: dengue virus; epidemiology; herpes simplex virus; human enterovirus; human parechovirus; immune pathogenesis; influenza virus; viral sepsis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Immune responses in viral sepsis. (A) Normal competent response to viral infection resulting in clearance of infection (1) When the immune system is exposed to a virus, the virus infects or is phagocytosed by macrophages, dendritic cells or other phagocytes. Phagocytes break down, process and present antigens from the virus and produce type 1 cytokines. (2) Type 1 cytokines cause T cells to differentiate into TH1 cells and CD8 T cells. (3) TH1 cells and CD8 T cells cause apoptosis of infected cells and activate processes such as the production of reactive oxygen species in phagocytes, which destroy the viruses. Antibody production is elevated, resulting in opsonisation, greater phagocytosis and destruction of viruses. (4) Virus is cleared and memory T cells are produced, which can rapidly respond to future infections. (B) Aberrant immune response resulting in viral sepsis and failure to clear virus. (1) When the immune system is exposed to a virus, the virus infects or is phagocytosed by macrophages, dendritic cells, or other phagocytes. Phagocytes break down, process and present antigens from the virus. Non-type 1 cytokines are produced. (2) Non-type 1 cytokines result in inappropriate type 2 or type 17 immune responses, which cause inflammation but cannot clear the virus. (3) T cells become exhausted and can no longer competently clear pathogens. (CTLA-4, cytotoxic T-lymphocyte–associated antigen 4; IFN, interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; PD-1, programmed death 1; TNF, tumour necrosis factor).

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA (2016) 315:801–10. 10.1001/jama.2016.0287 - DOI - PMC - PubMed
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. . Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest (1992) 101:1644–55. - PubMed
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. . 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. (2003) 29:530–8. 10.1007/s00134-003-1662-x - DOI - PubMed
    1. Simpson SQ. SIRS in the time of Sepsis-3. Chest (2018) 153:34–8. 10.1016/j.chest.2017.10.006 - DOI - PubMed
    1. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. (2018) 6:223–30. 10.1016/s2213-2600(18)30063-8 - DOI - PubMed

Publication types

LinkOut - more resources