Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct:52:103-110.
doi: 10.1016/j.sbi.2018.09.002. Epub 2018 Oct 12.

Modeling the value of predictive affinity scoring in preclinical drug discovery

Affiliations
Review

Modeling the value of predictive affinity scoring in preclinical drug discovery

Robert Abel et al. Curr Opin Struct Biol. 2018 Oct.

Abstract

Drug discovery is widely recognized to be a difficult and costly activity in large part due to the challenge of identifying chemical matter which simultaneously optimizes multiple properties, one of which is affinity for the primary biological target. Further, many of these properties are difficult to predict ahead of expensive and time-consuming compound synthesis and experimental testing. Here we highlight recent work to develop compound affinity prediction models, and extensively investigate the value such models may provide to preclinical drug discovery. We demonstrate that the ability of these models to improve the overall probability of success is crucially dependent on the shape of the error distribution, not just the root-mean-square error. In particular, while scoring more molecule ideas generally improves the probability of project success when the error distribution is Gaussian, fat-tail distributions such as a Cauchy distribution, can lead to a situation where scoring more ideas actually decreases the overall probability of success.

PubMed Disclaimer

LinkOut - more resources