Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Oct 15;19(1):162.
doi: 10.1186/s13059-018-1490-5.

A comparative study of endoderm differentiation in humans and chimpanzees

Affiliations
Comparative Study

A comparative study of endoderm differentiation in humans and chimpanzees

Lauren E Blake et al. Genome Biol. .

Abstract

Background: There is substantial interest in the evolutionary forces that shaped the regulatory framework in early human development. Progress in this area has been slow because it is difficult to obtain relevant biological samples. Induced pluripotent stem cells (iPSCs) may provide the ability to establish in vitro models of early human and non-human primate developmental stages.

Results: Using matched iPSC panels from humans and chimpanzees, we comparatively characterize gene regulatory changes through a four-day time course differentiation of iPSCs into primary streak, endoderm progenitors, and definitive endoderm. As might be expected, we find that differentiation stage is the major driver of variation in gene expression levels, followed by species. We identify thousands of differentially expressed genes between humans and chimpanzees in each differentiation stage. Yet, when we consider gene-specific dynamic regulatory trajectories throughout the time course, we find that at least 75% of genes, including nearly all known endoderm developmental markers, have similar trajectories in the two species. Interestingly, we observe a marked reduction of both intra- and inter-species variation in gene expression levels in primitive streak samples compared to the iPSCs, with a recovery of regulatory variation in endoderm progenitors.

Conclusions: The reduction of variation in gene expression levels at a specific developmental stage, paired with overall high degree of conservation of temporal gene regulation, is consistent with the dynamics of a conserved developmental process.

Keywords: Comparative genomics; Functional genomics; Gene expression.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Human fibroblasts samples for generation of iPSC lines were collected under University of Chicago IRB protocol 11–0524. Informed consent to participate in the study was obtained from all human participants. The original chimpanzee fibroblast samples for generation of iPSC lines were obtained from Yerkes Primate Research Center of Emory University under protocol 006–12, in full accordance with IACUC protocols [12]. All experimental methods comply with the Helsinki Declaration.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study design and quality control analyses. a Study design. Samples from four chimpanzees and six humans were studied at four time points during endoderm development. We included two technical replicates from each of the chimpanzees and two technical replicates for two of the six humans. iPSC induced pluripotent stem cell, PS primitive streak, EP endoderm progenitor, DE definitive endoderm. b Purity analysis. Cell type composition at each day based on FACS analysis (see “Methods”), estimated by k-means clustering. c Heat map of normalized log2(CPM) as a measure of expression levels of TFs that are known to be highly expressed in one or more stages in the differentiation to endoderm [7]. Generally, samples from the same day, regardless of species, cluster together
Fig. 2
Fig. 2
General patterns in the data. a Normalized log2(CPM) expression measurements for all genes projected onto the axes of the first two PCs. Color indicates day. Shape represents species. PC1 is highly correlated with differentiation day (r = 0.92). PC2 is highly correlated with species (r = 0.93). b Box plots of normalized expression values for genes with known roles in endoderm development
Fig. 3
Fig. 3
Number of DE genes in pairwise analyses. Venn diagrams of a DE genes at each day, b DE genes between consecutive time points in humans, c DE genes between consecutive time points in chimpanzees, d genes with a significant species–time point interaction effect at each day (DE was classified at FDR of 5% in all cases)
Fig. 4
Fig. 4
High sharing of DE genes across species. A circos diagram with the number of shared, human-specific, and chimpanzee-specific DE genes across time points. There is a high degree of sharing of DE genes (yellow ribbon), particularly from day 0 to 1 and day 1 to 2
Fig. 5
Fig. 5
Gene expression motifs. Correlation motifs based on the probability of differential expression across days for each species with the number of genes assigned to each correlation motif. The shading of each box represents the posterior probability that a gene is DE between two time points in a given species. Each row (“correlation motif”) represents the most prevalent expression patterns. Out of 10,304 genes, 8004 were assigned to one correlation motif in this model
Fig. 6
Fig. 6
Global reduction of variation in gene expression from the iPSCs to primitive streak state. Box plot of the log2 variance of expression levels for each gene. Variation in gene expression levels are significantly reduced from iPSCs to primitive streak (P < 10−15 in both species) but not in subsequent time points (P > 0.5 in both species)
Fig. 7
Fig. 7
Conserved patterns of reduced variation in gene expression at primitive streak. We plotted the P value distributions of F tests of the null hypothesis that there is no reduction in variation in gene expression levels as samples progress along the time course in human (a) and chimpanzee (b) samples. π^0 is the estimated proportion of null tests in each distribution. In the next four panels, we plotted the P value distribution for the same test, but included only genes whose variation was classified as reduced between states in the other species; thus in (c) we plotted P value distributions of F tests in chimpanzees only for genes who variation was classified as reduced (P < 0.05) in humans and in (d) we did the reverse. In (e) (chimpanzee conditional on human) and (f) (human conditional on chimpanzee), we plotted the P value distributions of F tests of the null hypothesis that there is increase in variation in gene expression levels as the samples progress from day 1 to 2

References

    1. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188:107–116. doi: 10.1126/science.1090005. - DOI - PubMed
    1. Nowick Katja, Gernat Tim, Almaas Eivind, Stubbs Lisa. Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain. Proceedings of the National Academy of Sciences. 2009;106(52):22358–22363. doi: 10.1073/pnas.0911376106. - DOI - PMC - PubMed
    1. Guohua Xu Augix, He Liu, Li Zhongshan, Xu Ying, Li Mingfeng, Fu Xing, Yan Zheng, Yuan Yuan, Menzel Corinna, Li Na, Somel Mehmet, Hu Hao, Chen Wei, Pääbo Svante, Khaitovich Philipp. Intergenic and Repeat Transcription in Human, Chimpanzee and Macaque Brains Measured by RNA-Seq. PLoS Computational Biology. 2010;6(7):e1000843. doi: 10.1371/journal.pcbi.1000843. - DOI - PMC - PubMed
    1. Somel M., Franz H., Yan Z., Lorenc A., Guo S., Giger T., Kelso J., Nickel B., Dannemann M., Bahn S., Webster M. J., Weickert C. S., Lachmann M., Paabo S., Khaitovich P. Transcriptional neoteny in the human brain. Proceedings of the National Academy of Sciences. 2009;106(14):5743–5748. doi: 10.1073/pnas.0900544106. - DOI - PMC - PubMed
    1. Gallego Romero I, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet. 2012;13:505–516. doi: 10.1038/nrg3229. - DOI - PMC - PubMed

Publication types