Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 17;17(1):368.
doi: 10.1186/s12936-018-2520-1.

Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes

Affiliations

Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes

Arnold S Mmbando et al. Malar J. .

Abstract

Background: Long-lasting insecticide-treated nets and indoor residual spraying protect against indoor-biting and indoor-resting mosquitoes but are largely ineffective for early-biting and outdoor-biting malaria vectors. Complementary tools are, therefore, needed to accelerate control efforts. This paper describes simple hessian ribbons treated with spatial repellents and wrapped around eaves of houses to prevent outdoor-biting and indoor-biting mosquitoes over long periods of time.

Methods: The eave ribbons are 15 cm-wide triple-layered hessian fabrics, in lengths starting 1 m. They can be fitted onto houses using nails, adhesives or Velcro, without completely closing eave-spaces. In 75 experimental nights, untreated ribbons and ribbons treated with 0.02%, 0.2%, 1.5% or 5% transfluthrin emulsion (spatial repellent) were evaluated against blank controls using two experimental huts inside a 202 m2 semi-field chamber where 500 laboratory-reared Anopheles arabiensis were released nightly. Two volunteers sat outdoors (one/hut) and collected mosquitoes attempting to bite them from 6 p.m. to 10 p.m. (outdoor-biting), then went indoors and slept under bed nets, beside which CDC-light traps collected mosquitoes from 10 p.m. to 6.30 a.m. (indoor-biting). To assess survival, 200 caged mosquitoes were suspended near the huts nightly and monitored for 24 h thereafter. Additionally, field tests were done in experimental huts in a rural Tanzanian village to evaluate treated ribbons (1.5% transfluthrin). Here, indoor-biting was assessed using window traps and Prokopack® aspirators, and outdoor-biting assessed using volunteer-occupied double-net traps.

Results: Indoor-biting and outdoor-biting decreased > 99% in huts fitted with eave ribbons having ≥ 0.2% transfluthrin. Even 0.02% transfluthrin-treated ribbons provided 79% protection indoors and 60% outdoors. Untreated ribbons however reduced indoor-biting by only 27% and increased outdoor-biting by 18%, though these were non-significant (P > 0.05). Of all caged mosquitoes exposed near treated huts, 99.5% died within 24 h. In field tests, the ribbons provided 96% protection indoors and 84% outdoors against An. arabiensis, plus 42% protection indoors and 40% outdoors against Anopheles funestus. Current prototypes cost ~ 7USD/hut, are made of widely-available hessian and require no specialized expertise.

Conclusion: Transfluthrin-treated eave ribbons significantly prevented outdoor-biting and indoor-biting malaria vectors and could potentially complement current tools. The technique is simple, low-cost, highly-scalable and easy-to-use; making it suitable even for poorly-constructed houses and low-income groups.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Pictorial illustration of the semi-field chambers and experimental huts used inside the VectorSphere. The semi-field chamber was designed to mimic local mosquito ecosystems in rural villages in Ulanga and Kilombero district, south-eastern Tanzania. There were two experimental huts with brick walls and thatched roofs inside the chamber, which enabled assessment of indoor and outdoor mosquito-biting risk. Each evening, 500 hungry-female Anopheles arabiensis mosquitoes were released inside the chamber. Adult male volunteers sat in the peri-domestic space of each of the huts and collected mosquitoes attempting to bite them between 1800 and 2200 h, before going indoors to sleep under intact bed nets. CDC-light traps were used to catch mosquitoes attempting to bite the sleeper between 2200 and 0630 h the next morning. Photograph by Emmanuel Mwanga
Fig. 2
Fig. 2
Pictorial illustration of the eave ribbons and their installation along the eave-spaces of the experimental huts (a). In the current trials the eave ribbons were designed in lengths of either 1 m or 1.5 m, so multiple pieces were used to cover the entire eave space of the huts (b). However, the ribbons could be designed and manufactured with longer lengths, then cut to fit specific house sizes. The ribbons are fitted such that they do not completely cover the eave space, but also without directly touching the experimental hut surfaces, to avoid any contamination (b). During the tests, both the two experimental huts in the chamber were either fitted with or not fitted with the eave ribbons. At the end of each set of tests, the chambers were left free for at least 2 days and two nights to prevent residual effects of the treatments. Photographs by Emmanuel Mwanga
Fig. 3
Fig. 3
Illustration of the experimental setup used to assess protective efficacy of the transfluthrin-treated eave ribbons inside the semi-field chamber. Two volunteers (one volunteer/hut) conducted HLC outdoors from 6 p.m. to 10 p.m. and thereafter moved inside the huts to sleep under untreated bed-net from 10 p.m. to 6.30 a.m., during which CDC-light traps were used to collect mosquitoes indoors in each hut. In the treatment setup, the huts were fitted with either untreated eave ribbons, or eave ribbons treated with 5%, 1.5%, 0.2% or 0.02% transfluthrin. Each concentration was tested individually for a total of 15 nights, with 2 days of resting before the next concentration was tested. Mosquito collections were done using similar approaches in controls and treatment days
Fig. 4
Fig. 4
Field evaluation of the protective efficacy of transfluthrin-treated eave ribbons fitted along the eave spaces of experimental huts in rural Tanzania. The figure shows experimental huts fitted with window traps to collect mosquitoes that enter the huts (a), and the eave ribbons which were fitted along the eave spaces all around the huts without completely closing off the eaves (b). The miniaturized double net traps used to catch host-seeking mosquitoes outdoors but near the huts are also shown (a)
Fig. 5
Fig. 5
Median number of Anopheles arabiensis mosquitoes caught per hut per night outdoors (by human landing catches) and indoors (by CDC light traps), when the huts had either no eave ribbons fitted (controls) or were fitted with untreated or treated eave ribbons. The figure shows both the actual mosquito counts per night and the model estimated mean catches

Similar articles

Cited by

References

    1. Toé KH, Jones CM, N’Fale S, Ismail HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis. 2014;20:1691. doi: 10.3201/eid2010.140619. - DOI - PMC - PubMed
    1. Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci USA. 2012;109:19063–19070. doi: 10.1073/pnas.1217229109. - DOI - PMC - PubMed
    1. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184. doi: 10.1186/1475-2875-10-184. - DOI - PMC - PubMed
    1. Vontas J, Moore S, Kleinschmidt I, Ranson H, Lindsay S, Lengeler C, et al. Framework for rapid assessment and adoption of new vector control tools. Trends Parasitol. 2014;30:191–204. doi: 10.1016/j.pt.2014.02.005. - DOI - PubMed
    1. Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14:e1002456. doi: 10.1371/journal.pmed.1002456. - DOI - PMC - PubMed