Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 27;12(11):10764-10771.
doi: 10.1021/acsnano.8b06268. Epub 2018 Oct 17.

AA'-Stacked Trilayer Hexagonal Boron Nitride Membrane for Proton Exchange Membrane Fuel Cells

Affiliations

AA'-Stacked Trilayer Hexagonal Boron Nitride Membrane for Proton Exchange Membrane Fuel Cells

Seong In Yoon et al. ACS Nano. .

Abstract

Hexagonal boron nitride (h-BN) and graphene have emerged as promising materials for proton exchange membranes because of their high proton conductivity and chemical stability. However, the defects and grain boundaries generated during the growth and transfer of two-dimensional materials limit their practical applicability. Here, we report the fabrication of membrane electrode assemblies using large-area single-oriented AA'-stacked trilayer h-BN (3L-BN), which exhibits very few defects during the growth and transfer, as a proton exchange membrane for use in fuel cell systems. The fuel cell based on AA'-stacked 3L-BN showed a H2 permeation current density as low as 2.69 mA cm-2 and an open circuit voltage (OCV) as high as 0.958 V; this performance is much superior to those for cells based on Nafion (3.7 mA cm-2 and 0.942 V, respectively) and single-layer h-BN (10.08 mA cm-2 and 0.894 V, respectively). Furthermore, the fuel cell with the AA'-stacked 3L-BN membrane almost maintained its original performance (OCV, maximum power density, and H2 permeation current density) even after 100 h of an accelerated stress test at 30% RH and 90 °C, while the fuel cells with the Nafion and single-layer BN membranes exhibited severely deteriorated performances. The stability of the cell based on the AA'-stacked 3L-BN membrane was better because the membrane prevented gas crossover and suppressed the generation of reactive radicals during cell operation.

Keywords: 2D material-based composite membrane; AA′-stacking; hexagonal boron nitride; high thermal and chemical stability; proton exchange membrane.

PubMed Disclaimer

LinkOut - more resources