Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 19;20(20):6453-6456.
doi: 10.1021/acs.orglett.8b02766. Epub 2018 Oct 11.

Synthesis of Phthalans Via Copper-Catalyzed Enantioselective Cyclization/Carboetherification of 2-Vinylbenzyl Alcohols

Affiliations

Synthesis of Phthalans Via Copper-Catalyzed Enantioselective Cyclization/Carboetherification of 2-Vinylbenzyl Alcohols

Dake Chen et al. Org Lett. .

Abstract

Enantiomerically enriched phthalans were synthesized efficiently via an enantioselective copper-catalyzed alkene carboetherification reaction. In this reaction, 2-vinylbenzyl alcohols enantioselectively cyclize then couple with vinylarenes. The utility of the method was demonstrated by the enantioselective synthesis of ( R)-fluspidine, a σ1 receptor ligand.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Bioactive phthalides and phthalans.
Scheme 1.
Scheme 1.
Phthalides and Phthalans from 2-Vinylbenzyl Alcohols and 2-Vinylbenzoic Acids
Scheme 2.
Scheme 2.
Proposed Copper-Catalyzed Carboetherification Mechanism
Scheme 3.
Scheme 3.
Scope with Respect to 2-Vinylbenzyl Alcohol or 2-Vinylbenzoic Acida
Scheme 4.
Scheme 4.
Scope of the Alkene Coupling Partnera
Scheme 5.
Scheme 5.
Enantioselective Synthesis of (R)-Fluspidine

References

    1. Karmakar R; Pahari P; Mal D Chem. Rev 2014, 114, 6213–6284. - PubMed
    2. Maestrup EG; Wiese C; Schepmann D; Brust P; Wunsch B Bioorg. Med. Chem 2011, 19, 393–405. - PubMed
    3. Holl K; Falck E; Kohler J; Schepmann D; Humpf H-U; Brust P; Wunsch B ChemMedChem 2013, 8, 2047–2056. - PubMed
    4. Brust P; Deuther-Conrad W; Becker G; Patt M; Donat CK; Stittsworth S; Fischer S; Hiller A; Wenzel B; Dukic-Stefanovic S; Hesse S; Steinbach J; Wunsch B; Lever SZ; Sabri OJ Nucl. Med 2014, 55, 1730–1736. - PubMed
    5. Nakane S; Yoshinaka S; Iwase S; Shuto Y; Bunse P; Wunsch B; Tanaka S; Kitamura M Tetrahedron 2018, 74, 5069–5084.
    1. Weldy NM; Schafer AG; Owens CP; Herting CJ; Varela-Alvarez A; Chen S; Niemeyer Z; Musaev DG; Sigman MS; Davies HML; Blakey SB Chem. Sci 2016, 7, 3142–3146. - PMC - PubMed
    2. Phan DHT; Kim B; Dong VM J. Am. Chem. Soc 2009, 131, 15608–15609. - PubMed
    1. Kobayashi K; Shikata K; Fukamachi S; Konishi H Heterocycles 2008, 75, 599–609.
    1. Nicolai S; Erard S; Gonzalez DF; Waser J Org. Lett 2010, 12, 384–387. - PubMed
    2. Ha TM; Wang Q; Zhu J Chem. Commun 2016, 52, 11100–11103. - PubMed
    3. Xie J; Wang Y-W; Qi L-W; Zhang B Org. Lett 2017, 19, 1148–1151 Reviews of alkene carboetherification by oxymetallation: . - PubMed
    4. Wolfe JP Synlett 2008, 2008, 2913–2937.
    5. Garlets ZJ; White DR; Wolfe JP Asian J. Org. Chem 2017, 6, 636–653. - PMC - PubMed
    6. McDonald RI; Liu G; Stahl SS Chem. Rev 2011, 111, 2981–3019. - PMC - PubMed
    7. Chemler SR; Karyakarte SD; Khoder ZM J. Org. Chem 2017, 82, 11311–11325. - PMC - PubMed
    1. Reddy RS; Kiran INC; Sudalai A Org. Biomol. Chem 2012, 10, 3655–3661. - PubMed

Publication types