Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation
- PMID: 30337367
- PMCID: PMC6322884
- DOI: 10.1074/jbc.RA118.005233
Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation
Abstract
Iron is critical for virtually all organisms, yet major questions remain regarding the systems-level understanding of iron in whole cells. Here, we obtained Mössbauer and EPR spectra of Escherichia coli cells prepared under different nutrient iron concentrations, carbon sources, growth phases, and O2 concentrations to better understand their global iron content. We investigated WT cells and those lacking Fur, FtnA, Bfr, and Dps proteins. The coarse-grain iron content of exponentially growing cells consisted of iron-sulfur clusters, variable amounts of nonheme high-spin FeII species, and an unassigned residual quadrupole doublet. The iron in stationary-phase cells was dominated by magnetically ordered FeIII ions due to oxyhydroxide nanoparticles. Analysis of cytosolic extracts by size-exclusion chromatography detected by an online inductively coupled plasma mass spectrometer revealed a low-molecular-mass (LMM) FeII pool consisting of two iron complexes with masses of ∼500 (major) and ∼1300 (minor) Da. They appeared to be high-spin FeII species with mostly oxygen donor ligands, perhaps a few nitrogen donors, and probably no sulfur donors. Surprisingly, the iron content of E. coli and its reactivity with O2 were remarkably similar to those of mitochondria. In both cases, a "respiratory shield" composed of membrane-bound iron-rich respiratory complexes may protect the LMM FeII pool from reacting with O2 When exponentially growing cells transition to stationary phase, the shield deactivates as metabolic activity declines. Given the universality of oxidative phosphorylation in aerobic biology, the iron content and respiratory shield in other aerobic prokaryotes might be similar to those of E. coli and mitochondria.
Keywords: Mössbauer spectroscopy; chemiosmotic coupling; cyanide; electron paramagnetic resonance (EPR); ferric uptake regulator; ferritin; iron homeostasis; iron metabolism; labile iron pool; metal homeostasis; mitochondria.
© 2019 Wofford et al.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures









Similar articles
-
Ferric uptake regulator (Fur) reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis in Escherichia coli.J Biol Chem. 2020 Nov 13;295(46):15454-15463. doi: 10.1074/jbc.RA120.014814. Epub 2020 Sep 14. J Biol Chem. 2020. PMID: 32928958 Free PMC article.
-
O2 availability impacts iron homeostasis in Escherichia coli.Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12261-12266. doi: 10.1073/pnas.1707189114. Epub 2017 Oct 30. Proc Natl Acad Sci U S A. 2017. PMID: 29087312 Free PMC article.
-
Mössbauer studies of the redox state of the ferric uptake regulator [2Fe-2S]2+ cluster in Escherichia coli.J Inorg Biochem. 2025 Sep;270:112928. doi: 10.1016/j.jinorgbio.2025.112928. Epub 2025 Apr 18. J Inorg Biochem. 2025. PMID: 40288001
-
How Is Fe-S Cluster Formation Regulated?Annu Rev Microbiol. 2015;69:505-26. doi: 10.1146/annurev-micro-091014-104457. Annu Rev Microbiol. 2015. PMID: 26488283 Free PMC article. Review.
-
Mössbauer spectroscopy of Fe/S proteins.Biochim Biophys Acta. 2015 Jun;1853(6):1395-405. doi: 10.1016/j.bbamcr.2014.12.005. Epub 2014 Dec 10. Biochim Biophys Acta. 2015. PMID: 25498248 Review.
Cited by
-
Bacterial Approaches for Assembling Iron-Sulfur Proteins.mBio. 2021 Dec 21;12(6):e0242521. doi: 10.1128/mBio.02425-21. Epub 2021 Nov 16. mBio. 2021. PMID: 34781750 Free PMC article. Review.
-
Human mitochondrial ferritin exhibits highly unusual iron-O2 chemistry distinct from that of cytosolic ferritins.Nat Commun. 2025 May 20;16(1):4695. doi: 10.1038/s41467-025-59463-1. Nat Commun. 2025. PMID: 40393986 Free PMC article.
-
Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules.J Inorg Biochem. 2023 Oct;247:112306. doi: 10.1016/j.jinorgbio.2023.112306. Epub 2023 Jun 26. J Inorg Biochem. 2023. PMID: 37451083 Free PMC article. Review.
-
Ferrous Iron-Dependent Pharmacology.Trends Pharmacol Sci. 2021 Jan;42(1):7-18. doi: 10.1016/j.tips.2020.11.003. Epub 2020 Nov 28. Trends Pharmacol Sci. 2021. PMID: 33261861 Free PMC article. Review.
-
Iron availability enhances the cellular energetics of aerobic Escherichia coli cultures while upregulating anaerobic respiratory chains.N Biotechnol. 2022 Nov 25;71:11-20. doi: 10.1016/j.nbt.2022.06.004. Epub 2022 Jun 28. N Biotechnol. 2022. PMID: 35777694 Free PMC article.
References
-
- Gütlich P., Bill E., and Trautwein A. X. (2011) Mössbauer Spectroscopy and Transition Metal Chemistry, Springer, New York
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases