Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 4:6:259.
doi: 10.3389/fped.2018.00259. eCollection 2018.

The Relationship Between Medial Gastrocnemius Lengthening Properties and Stretch Reflexes in Cerebral Palsy

Affiliations

The Relationship Between Medial Gastrocnemius Lengthening Properties and Stretch Reflexes in Cerebral Palsy

Lynn Bar-On et al. Front Pediatr. .

Abstract

Stretch reflex hyperactivity in the gastrocnemius of children with spastic cerebral palsy (CP) is commonly evaluated by passively rotating the ankle joint into dorsiflexion at different velocities, such as applied in conventional clinical spasticity assessments. However, surface electromyography (sEMG) collected from the medial gastrocnemius (MG) during such examination reveals unexplained heterogeneity in muscle activation between patients. Recent literature also highlights altered muscle tensile behavior in children with spastic CP. We aimed to document MG muscle and tendon lengthening during passive ankle motion at slow and fast velocity and explore its interdependence with the elicited hyperactive stretch reflex. The ankle of 15 children with CP (11 ± 3 years, GMFCS 9I 6II, 8 bilateral, 7 unilateral) and 16 typically developing children (TDC) was passively rotated over its full range of motion at slow and fast velocity. Ultrasound, synchronized with motion-analysis, was used to track the movement of the MG muscle-tendon junction and extract the relative lengthening of muscle and tendon during joint rotation. Simultaneously, MG sEMG was measured. Outcome parameters included the angular and muscle lengthening velocities 30 ms before EMG onset and the gain in root mean square EMG during stretch, as a measure of stretch reflex activity. Compared to slow rotation, the muscle lengthened less and stretch reflex activity was higher during fast rotation. These velocity-induced changes were more marked in CP compared to TDC. In the CP group, muscle-lengthening velocity had higher correlation coefficients with stretch reflex hyperactivity than joint angular velocity. Muscles with greater relative muscle lengthening during slow rotation had earlier and stronger stretch reflexes during fast rotation. These initial results suggest that ankle angular velocity is not representative of MG muscle lengthening velocity and is less related to stretch reflex hyperactivity than MG muscle lengthening. In addition, muscles that lengthened more during slow joint rotation were more likely to show a velocity-dependent stretch reflex. This interdependence of muscle lengthening and stretch reflexes may be important to consider when administering treatment. However, muscle and tendon lengthening properties alone could not fully explain the variability in stretch reflexes, indicating that other factors should also be investigated.

Keywords: EMG; cerebral palsy; dynamic ultrasound; medial gastrocnemius; muscle stiffness; spasticity; stretch reflexes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Experimental design of the lower-leg placed in the custom-made orthosis to standardize the knee position and ankle movement; (B) close-up of the ultrasound probe with reflective markers; (C) close-up of the foot attached with an insole to the foot plate of the orthotic. A 6 DoF hand held load-cell was used to measure net ankle joint torque during passive rotation. Two clusters of reflective markers on the tibia and footplate were tracked with motion analysis and used to calculate the foot-plate angle in 3D. The ultrasound probe was placed proximal to the muscle tendon junction, and the position and orientation of the image were defined by motion analysis by means of a cluster of reflective markers attached to the probe. Surface electromyography was collected throughout the experiments from the medial gastrocnemius.
Figure 2
Figure 2
Relative muscle lengthening during slow rotations in children with cerebral palsy vs. (A) normalized RMS-EMG during slow rotations and (B) average MVSRT during fast rotations. A regression line is shown for significant relationships.
Figure 3
Figure 3
Angular velocity, medial gastrocnemius muscle lengthening velocity, and medial gastrocnemius RMS-EMG during fast passive rotation examples of muscles from three different subjects in the CP group. Timing of EMG-onset (black dashed line) and the stretch reflex threshold 30 ms prior to EMG-onset (black vertical line), are indicated.

Similar articles

Cited by

References

    1. Graham HK, Rosenbaum P, Paneth N, Dan B, Lin J-P, Damiano DL, et al. . Cerebral palsy. Nat Rev Dis Prim. (2016) 7:15082. 10.1038/nrdp.2015.82 - DOI - PMC - PubMed
    1. Lance J. Symposium Synopsis. In: E. Feldman RG, Young RR, Koella WP. editors. Spasticity: Disordered Motor Control. Chicago: Yearbook medical; (1980). p. 485–494.
    1. Gage JR. The Identification and Treatment of Gait Problems in Cerebral Palsy. 2nd ed. London: Mac Keith Press; (2009).
    1. Morrell DS, Pearson JM, Sauser DD. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. Radiographics (2002) 22:257–68. 10.1148/radiographics.22.2.g02mr19257 - DOI - PubMed
    1. Molenaers G, Desloovere K, Fabry G, De Cock P. The effects of quantitative gait assessment and botulinum toxin a on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg Am. (2006) 88:161–70. 10.2106/JBJS.C.01497 - DOI - PubMed