Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov;7(22):e1801033.
doi: 10.1002/adhm.201801033. Epub 2018 Oct 19.

Two-Layered and Stretchable e-Textile Patches for Wearable Healthcare Electronics

Affiliations

Two-Layered and Stretchable e-Textile Patches for Wearable Healthcare Electronics

Thanh-Giang La et al. Adv Healthc Mater. 2018 Nov.

Abstract

Wearable healthcare systems require skin-adhering electrodes that allow maximal comfort for patients as well as an electronics system to enable signal processing and transmittance. Textile-based electronics, known as "e-textiles," is a platform technology that allows comfort for patients. Here, two-layered e-textile patches are designed by controlled permeation of Ag-particle/fluoropolymer composite ink into a porous textile. The permeated ink forms a cladding onto the nanofibers in the textile substrate, which is beneficial for mechanical and electrical properties of the e-textile. The printed e-textile features conductivity of ≈3200 S cm-1 , whereas 1000 cycles of 30% uniaxial stretching causes the resistance to increase only by a factor of ≈5, which is acceptable in many applications. Controlling over the penetration depth enables a two-layer design of the e-textile, where the sensing electrodes and the conducting traces are printed in the opposite sides of the substrate. The formation of vertical interconnected access is remarkably simple as an injection from a syringe. With the custom-developed electronic circuits, a surface electromyography system with wireless data transmission is demonstrated. Furthermore, the dry e-textile patch collects electroencephalography with comparable signal quality to commercial gel electrodes. It is anticipated that the two-layered e-textiles will be effective in healthcare and sports applications.

Keywords: e-textiles; electroencephalography; stretchable electronics; surface electromyography; wetting.

PubMed Disclaimer

Publication types

LinkOut - more resources