Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar;24(2):301-307.
doi: 10.1007/s10741-018-9747-3.

Chronic heart failure: a disease of the brain

Affiliations
Review

Chronic heart failure: a disease of the brain

Ram B Singh et al. Heart Fail Rev. 2019 Mar.

Abstract

The underlying mechanism for clinical and biochemical manifestations of chronic heart failure (HF) may be due in part to neurohumoral adaptations, such as activation of the renin-angiotensin-aldosterone and sympathetic nervous systems in the periphery and the brain. Internet search and discussion with colleagues are the methods for this study. Since chronic HF is associated with autonomic imbalance with increased sympathetic nerve activity and a withdrawal of parasympathetic activity, it may be considered a brain disease. This phenomenon may be the result of an increased systemic and cerebral angiotensin II signaling because plasma angiotensin II is increased in humans and animals with chronic HF. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic HF. Activation of angiotensin II signaling in different brain sites such as the paraventricular nucleus (PVN), rostral ventrolateral medulla (RVLM), and area postrema (AP) may increase the release of norepinephrine, oxidative stress, and inflammation leading to increased cardiac contractility. It is possible that blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the PVN. The administration of an angiotensin receptor blocker by injection into the AP activates the sympatho-inhibitory baroreflex indicating that receptor blockers act by increasing parasympathetic activity. In chronic HF, in peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity. Increased circulating angiotensin II during chronic HF may enhance the sympatho-excitatory chemoreflex and inhibit the sympatho-inhibitory baroreflex resulting in worsening of HF. Increased circulating angiotensin II signaling can directly act on the central nervous system via the subfornical organ and the AP to increase sympathetic outflow resulting in to neurohumoral dysfunction, resulting in to heart failure.

Keywords: Brain-heart interactions; Cardiac failure; Hypertrophy of heart; Neurohumoral dysfunction.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ann Agric Environ Med. 2013;20(4):745-8 - PubMed
    1. Br J Clin Pharmacol. 2001 Aug;52(2):159-64 - PubMed
    1. Eur Heart J. 2013 Sep;34(33):2585-91 - PubMed
    1. Mol Med Rep. 2015 Dec;12(6):7823-9 - PubMed
    1. N Engl J Med. 2013 Jan 31;368(5):455-64 - PubMed

MeSH terms

LinkOut - more resources