Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec 1;75(12):1289-1297.
doi: 10.1001/jamapsychiatry.2018.2530.

The Science of Prognosis in Psychiatry: A Review

Affiliations
Review

The Science of Prognosis in Psychiatry: A Review

Paolo Fusar-Poli et al. JAMA Psychiatry. .

Abstract

Importance: Prognosis is a venerable component of medical knowledge introduced by Hippocrates (460-377 BC). This educational review presents a contemporary evidence-based approach for how to incorporate clinical risk prediction models in modern psychiatry. The article is organized around key methodological themes most relevant for the science of prognosis in psychiatry. Within each theme, the article highlights key challenges and makes pragmatic recommendations to improve scientific understanding of prognosis in psychiatry.

Observations: The initial step to building clinical risk prediction models that can affect psychiatric care involves designing the model: preparation of the protocol and definition of the outcomes and of the statistical methods (theme 1). Further initial steps involve carefully selecting the predictors, preparing the data, and developing the model in these data. A subsequent step is the validation of the model to accurately test its generalizability (theme 2). The next consideration is that the accuracy of the clinical prediction model is affected by the incidence of the psychiatric condition under investigation (theme 3). Eventually, clinical prediction models need to be implemented in real-world clinical routine, and this is usually the most challenging step (theme 4). Advanced methods such as machine learning approaches can overcome some problems that undermine the previous steps (theme 5). The relevance of each of these themes to current clinical risk prediction modeling in psychiatry is discussed and recommendations are given.

Conclusions and relevance: Together, these perspectives intend to contribute to an integrative, evidence-based science of prognosis in psychiatry. By focusing on the outcome of the individuals, rather than on the disease, clinical risk prediction modeling can become the cornerstone for a scientific and personalized psychiatry.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources