Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct:143:83-96.
doi: 10.1016/j.brainresbull.2018.10.007. Epub 2018 Oct 19.

Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage

Affiliations

Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage

Xuejin Cao et al. Brain Res Bull. 2018 Oct.

Abstract

The glymphatic pathway and meningeal lymphatic vessels are involved in clearance of metabolic macromolecules from the brain. However, the functional interaction between the two systems in the maintenance of brain homeostasis remains unclear. Here we reported that deletion of aquaporin-4 (AQP4), a functional regulator of glymphatic clearance, aggravated brain pathology of 3 month-old mice after blocking of the meningeal lymphatic drainage for 2 weeks via ligation of the deep cervical lymphatic nodes (LdcLNs). LdcLNs increased total and phosphorylated Tau protein levels in the hippocampus of both genotype mice, but increased hippocampal amyloid beta 1-40 and 1-42 levels only in AQP4 null mice, with up-regulation of beta-site amyloid precursor protein-cleaving enzyme 1 and down-regulation of insulin degrading enzyme. Consistently, LdcLNs caused microglial reactivity and activation of nod-like receptor protein-3 inflammasomes in the AQP4 null hippocampus. These mice also showed hippocampal neuronal apoptosis and declines in exploring and cognitive abilities. Deletion of AQP4, but not LdcLNs, increased brain water content. Together, these findings have revealed respective and interactive roles of the glymphatic system and the dural lymphatic system in maintaining amyloid beta, Tau proteins and water homeostasis in the brain, helping to understand the pathogenesis of neurological diseases associated with mis-accumulation of brain macromolecules.

Keywords: Amyloid beta; Aquaporin-4; Deep cervical lymphatic nodes; Glymphatic system; Meningeal lymphatic vessels.

PubMed Disclaimer

Publication types

LinkOut - more resources