Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 15:192:220-225.
doi: 10.1016/j.talanta.2018.09.041. Epub 2018 Sep 13.

Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples

Affiliations

Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples

Qing Cai et al. Talanta. .

Abstract

PCR enables sensitive and specific detection of infectious disease agents, but application in point-of-care diagnostic testing remains scarce. A compact tool that runs PCR assays in less than a few minutes and that relies on mass-producible, disposable reactors could revolutionize while-you-wait molecular testing. We here exploit well-established semiconductor manufacturing processes to produce silicon ultra-fast quantitative PCR (UF-qPCR) chips that can run PCR protocols with limited assay optimization. A total of 110 clinical samples were analyzed for the detection of group B streptococci using both a validated benchtop and an on-chip qPCR assay. For the on-chip assay, the total reaction time was reduced after optimization to less than 5 min. The standard curve, spanning a concentration range of 5 log units, yielded a PCR efficiency of 94%. The sensitivity obtained was 96% (96/100; CI: 90-98%) and the specificity 70% (7/10; CI: 40-90%). We show that if melting analyses would be integrated, the obtained sensitivity would drop slightly to 93% (CI: 86-96%), while the specificity would increase to 100% (CI: 72% - 100%). In comparison to the benchtop reference qPCR assay performed on a LightCycler©96, the on-chip assay demonstrated a highly significant qualitative (Spearman's rank correlation) and quantitative (linear regression) correlation. Using a mass-producible qPCR chip and limited assay optimization, we were able to develop a validated qPCR protocol that can be carried out in less than five minutes. The analytical performance of the microchip-based UF-qPCR system was shown to match that of a benchtop assay. This is the first report to provide UF-qPCR validation using clinical samples. We demonstrate that qPCR-based while-you-wait testing is feasible without jeopardizing assay performance.

Keywords: Clinical samples; On-chip; Silicon; Streptococcus agalactiae; Ultra-fast; qPCR.

PubMed Disclaimer

LinkOut - more resources