Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 12:6:65.
doi: 10.1186/s40560-018-0333-5. eCollection 2018.

Immunosenescence in neurocritical care

Affiliations
Review

Immunosenescence in neurocritical care

Shigeaki Inoue et al. J Intensive Care. .

Abstract

Background: Several advanced and developing countries are now entering a superaged society, in which the percentage of elderly people exceeds 20% of the total population. In such an aging society, the number of age-related diseases such as malignant tumors, diabetes, and severe infections including sepsis is increasing, and patients with such disorders often find themselves in the ICU.

Main body: Age-related diseases are closely related to age-induced immune dysfunction, by which reductions in the efficiency and specificity of the immune system are collectively termed "immunosenescence." The most noticeable is a decline in the antigen-specific acquired immune response. The exhaustion of T cells in elderly sepsis is related to an increase in nosocomial infections after septicemia, and even death over subacute periods. Another characteristic is that senescent cells that accumulate in body tissues over time cause chronic inflammation through the secretion of proinflammatory cytokines, termed senescence-associated secretory phenotype. Chronic inflammation associated with aging has been called "inflammaging," and similar age-related diseases are becoming an urgent social problem.

Conclusion: In neuro ICUs, several neuro-related diseases including stroke and sepsis-associated encephalopathy are related to immunosenescence and neuroinflammation in the elderly. Several advanced countries with superaged societies face the new challenge of improving the long-term prognosis of neurocritical patients.

Keywords: Elderly; Immune paralysis; Immunosenescence; Sepsis.

PubMed Disclaimer

Conflict of interest statement

Not applicable.Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Changes in bone marrow/thymus accompanying aging and changes in immune response cells. Although the number of stem cells in the bone marrow is not affected by aging, differentiation into common lymphoid progenitor cells decreases and shifts to differentiation into myeloid-type common progenitor cells. Therefore, differentiation into lymphoid cells (T cells, B cells) decreases, and differentiation into myeloid cells (granulocytes/monocytes) increases. The thymus, which is the site of the differentiation and maturation of T cells, atrophies with age. Therefore, in young people, naive T cells predominate; however, with age, there is a shift to dominant T cells (memory T cells), which is activated by antigen stimulation or some internal factor. HSCs, hematopoietic stem cells; CMP, common myeloid progenitor; CLP, common lymphoid progenitor
Fig. 2
Fig. 2
Age-related changes in innate immune effector cells
Fig. 3
Fig. 3
Age-related changes in adaptive immune effector cells
Fig. 4
Fig. 4
Aging of somatic cells and immune effector cells. SAPS, senescence-associated secretory phenotype
Fig. 5
Fig. 5
Mechanism of sepsis-associated encephalopathy

Similar articles

Cited by

References

    1. Petsko GA. A seat at the table. Genome Biol. 2008;9:113. doi: 10.1186/gb-2008-9-12-113. - DOI - PMC - PubMed
    1. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123:966–972. doi: 10.1172/JCI64098. - DOI - PMC - PubMed
    1. Prattichizzo F, De Nigris V, La Sala L, Procopio AD, Olivieri F, Ceriello A. “Inflammaging” as a druggable target: a senescence-associated secretory phenotype-centered view of type 2 diabetes. Oxidative Med Cell Longev. 2016;2016:1810327. doi: 10.1155/2016/1810327. - DOI - PMC - PubMed
    1. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan. 2013;2:8. doi: 10.1186/2046-2395-2-8. - DOI - PMC - PubMed
    1. Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol. 2007;42:385–390. doi: 10.1016/j.exger.2006.11.019. - DOI - PMC - PubMed

LinkOut - more resources