Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 8:5:244.
doi: 10.3389/fvets.2018.00244. eCollection 2018.

Use of the Human Vaccine, Mycobacterium bovis Bacillus Calmette Guérin in Deer

Affiliations
Review

Use of the Human Vaccine, Mycobacterium bovis Bacillus Calmette Guérin in Deer

Mitchell V Palmer et al. Front Vet Sci. .

Abstract

The only vaccine ever approved for human tuberculosis was developed a century ago from an isolate of Mycobacterium bovis derived from a tuberculous cow. Initial safety and efficacy studies of an attenuated version of this isolate were conducted in cattle and other animals. In 1921 the first human, an infant, was orally dosed with this attenuated strain that came to be known as M. bovis bacillus Calmette-Guérin (BCG); named for Albert Calmette and Camille Guérin, the two French scientists that developed the strain. Since 1921, billions of people have been vaccinated with BCG making it the oldest, most widely used, and safest vaccine in use today. It is also the tuberculosis vaccine most studied for use in wildlife, including deer. While BCG vaccination of deer may not reliably prevent infection, it consistently decreases lesion severity, minimizing large, necrotic lesions, which often contain large numbers of bacilli. It is believed that decreased lesion severity correlates with decreased disease transmission; however, this hypothesis remains to be proven. Safety studies in white-tailed deer show BCG may persist in lymphoid tissues for up to 12 months; a factor to be considered in deer used for food. Beyond efficacy and safety, methods of vaccine delivery to free-ranging deer are also under investigation, both in the laboratory and in the field. The ideal delivery method is effective, efficient and safe for non-target species, including livestock. Ingestion of BCG by cattle is of special concern as such cattle may present as "false positives" using currently approved diagnostic methods, thus interfering with efforts by animal health agencies to monitor cattle for tuberculosis. An effective BCG vaccine for deer would be of value in regions where free-ranging deer represent a potential source of M. bovis for livestock. Such a vaccine would also be beneficial to farmed deer where M. bovis represents a serious threat to trade and productivity.

Keywords: BCG; deer; mycobacterium; tuberculosis; vaccine; wildlife.

PubMed Disclaimer

References

    1. Palmer MV, Waters WR. Bovine tuberculosis and the establishment of an eradication program in the United States: role of veterinarians. Vet Med Int. (2011) 2011:816345. 10.4061/2011/816345 - DOI - PMC - PubMed
    1. Palmer MV, Thacker TC, Waters WR, Gortazar C, Corner LA. Mycobacterium bovis: a model pathogen at the interface of livestock, wildlife, and humans. Vet Med Int. (2012) 2012:236205. 10.1155/2012/236205 - DOI - PMC - PubMed
    1. O'Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE. Management of bovine tuberculosis in Michigan wildlife: current status and near term prospects. Vet Microbiol. (2011) 151:179–87. 10.1016/j.vetmic.2011.02.042 - DOI - PubMed
    1. O'Brien DJ, Schmitt SM, Rudolph BA, Nugent G. Recent advances in the management of bovine tuberculosis in free-ranging wildlife. Vet Microbiol. (2011) 151:23–33. 10.1016/j.vetmic.2011.02.022 - DOI - PubMed
    1. Ekdahl MO, Smith BL, Money DFL. Tuberculosis in some wild and feral animals in New Zealand. NZ Vet J. (1969) 18:44–5. 10.1080/00480169.1970.33860 - DOI - PubMed

LinkOut - more resources