Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar;31(13):e1804297.
doi: 10.1002/adma.201804297. Epub 2018 Oct 22.

Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials

Affiliations
Review

Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials

Santosh K Singh et al. Adv Mater. 2019 Mar.

Abstract

The oxygen reduction reaction (ORR) is a core reaction for electrochemical energy technologies such as fuel cells and metal-air batteries. ORR catalysts have been limited to platinum, which meets the requirements of high activity and durability. Over the last few decades, a variety of materials have been tested as non-Pt catalysts, from metal-organic complex molecules to metal-free catalysts. In particular, nitrogen-doped graphitic carbon materials, including N-doped graphene and N-doped carbon nanotubes, have been extensively studied. However, due to the lack of understanding of the reaction mechanism and conflicting knowledge of the catalytic active sites, carbon-based catalysts are still under the development stage of achieving a performance similar to Pt-based catalysts. In addition to the catalytic viewpoint, designing mass transport pathways is required for O2 . Recently, the importance of pyridinic N for the creation of active sites for ORR and the requirement of hydrophobicity near the active sites have been reported. Based on the increased knowledge in controlling ORR performances, bottom-up preparation of N-doped carbon catalysts, using N-containing conjugative molecules as the assemblies of the catalysts, is promising. Here, the recent understanding of the active sites and the mechanism of ORRs on N-doped carbon catalysts are reviewed.

Keywords: bottom-up synthesis; fuel cells; nitrogen-doped carbon catalysts; oxygen reduction reaction; pyridinic nitrogen.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources