Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 7;140(44):14799-14806.
doi: 10.1021/jacs.8b08334. Epub 2018 Oct 23.

Alkali and Alkaline Earth Hydrides-Driven N2 Activation and Transformation over Mn Nitride Catalyst

Affiliations

Alkali and Alkaline Earth Hydrides-Driven N2 Activation and Transformation over Mn Nitride Catalyst

Fei Chang et al. J Am Chem Soc. .

Abstract

Early 3d transition metals are not focal catalytic candidates for many chemical processes because they have strong affinities to O, N, C, or H, etc., which would hinder the conversion of those species to products. Metallic Mn, as a representative, undergoes nitridation under ammonia synthesis conditions forming bulk phase nitride and unfortunately exhibits negligible catalytic activity. Here we show that alkali or alkaline earth metal hydrides (i.e., LiH, NaH, KH, CaH2 and BaH2, AHs for short) promotes the catalytic activity of Mn nitride by orders of magnitude. The sequence of promotion is BaH2 > LiH > KH > CaH2 > NaH, which is different from the order observed in conventional oxide or hydroxide promoters. AHs, featured by bearing negatively charged hydrogen atoms, have chemical potentials in removing N from Mn nitride and thus lead to significant enhancement of N2 activation and subsequent conversion to NH3. Detailed investigations on Mn-LiH catalytic system disclosed that the active phase and kinetic behavior depend strongly on reaction conditions. Based on the understanding of the synergy between AHs and Mn nitride, a strategy in the design and development of early transition metals as effective catalysts for ammonia synthesis and other chemical processes is proposed.

PubMed Disclaimer

LinkOut - more resources