Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 24;400(5):651-661.
doi: 10.1515/hsz-2018-0204.

Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis

Affiliations

Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis

Chang Liu et al. Biol Chem. .

Abstract

Aberrant microglial activation and neuroinflammation is a pathological hallmark of amyotrophic lateral sclerosis (ALS). Fractalkine (CX3CL1) is mostly expressed on neuronal cells. The fractalkine receptor (CX3CR1) is predominantly expressed on microglia. Many progressive neuroinflammatory disorders show disruption of the CX3CL1/CX3CR1 communication system. But the exact role of the CX3CL1/CX3CR1 in ALS pathology remains unknown. F1 nontransgenic/CX3CR1+/- females were bred with SOD1G93A/CX3CR1+/- males to produce F2 SOD1G93A/CX3CR1-/-, SOD1G93A/CX3CR1+/+. We analyzed end-stage (ES) SOD1G93A/CX3CR1-/- mice and progression-matched SOD1G93A/CX3CR1+/+ mice. Our study showed that the male SOD1G93A/CX3CR1-/- mice died sooner than male SOD1G93A/CX3CR1+/+ mice. In SOD1G93A/CX3CR1-/- mice demonstrated more neuronal cell loss, more microglial activation and exacerbated SOD1 aggregation at the end-stage of ALS. The NF-κB pathway was activated; the autophagy-lysosome degradation pathway and the autophagosome maturation were impaired. Our results indicated that the absence of CX3CR1/CX3CL1 signaling in the central nervous system (CNS) may worsen neurodegeneration. The CX3CL1/CX3CR1 communication system has anti-inflammatory and neuroprotective effects and plays an important role in maintaining autophagy activity. This effort may lead to new therapeutic strategies for neuroprotection and provide a therapeutic target for ALS patients.

Keywords: CX3CR1; amyotrophic lateral sclerosis (ALS); autophagy; inflammatory.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bazan, J.F., Bacon, K.B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D.R., Zlotnik, A., and Schall, T.J. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644.
    1. Bellingham, M.C. (2011). A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci. Ther. 17, 4–31.
    1. Boillee, S., Yamanaka, K., Lobsiger, C.S., Copeland, N.G., Jenkins, N.A., Kassiotis, G., Kollias, G., and Cleveland, D.W. (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392.
    1. Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., et al. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924.
    1. Cirulli, E.T., Lasseigne, B.N., Petrovski, S., Sapp, P.C., Dion, P.A., Leblond, C.S., Couthouis, J., Lu, Y.F., Wang, Q., Krueger, B.J., et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441.

Publication types