Summary Outcomes of the ODIN Project on Food Fortification for Vitamin D Deficiency Prevention
- PMID: 30352957
- PMCID: PMC6266662
- DOI: 10.3390/ijerph15112342
Summary Outcomes of the ODIN Project on Food Fortification for Vitamin D Deficiency Prevention
Abstract
Food-based solutions for optimal vitamin D nutrition and health through the life cycle (ODIN) was a cross-disciplinary, collaborative project, including 30 partners from 19 countries, which aimed to develop evidence-based solutions to prevent low vitamin D status (25-hydroxyvitamin D (25(OH)D) < 30 nmol/L) using a food-first approach. This paper provides a summary overview of some of the important ODIN outcomes and outlines some outstanding data requirements. In a study of almost 56,000 individuals, the first internationally standardised dataset of vitamin D status showed that 13% of EU residents overall, across a latitude gradient of 35° N to 69° N, had serum 25(OH)D < 30 nmol/L and 40% were < 50 nmol/L. The risk of low vitamin D status was several-fold higher among persons of ethnic minority. However, additional data from quality bio-banked sera would be required to improve these estimates. To address the question of dietary requirements for vitamin D among under-researched life-stage and population groups, four dose-response RCTs conducted in Northern Europe showed that vitamin D₃ intakes of 8 and 13 μg/day prevented 25(OH)D decreasing below 30 nmol/L in white children and adolescents and 20 and 30 μg/day, respectively, achieved ≥50 nmol/L. Among white women during pregnancy, 30 μg/day is required to prevent umbilical cord 25(OH)D, representing new-born vitamin D status, below 25 nmol/L. While 8 μg/day protected white women in Finland at the 30 nmol/L cut-off, 18 μg/day was needed by women of East African descent to prevent 25(OH)D decreasing below 30 nmol/L during wintertime. Replicate RCTs are needed in young children <5 years and in school-age children, teens and pregnant women of ethnic minority. Using a series of food production studies, food-based RCTs and dietary modelling experiments, ODIN research shows that diverse fortification strategies could safely increase population intakes and prevent low vitamin D status. Building on this solid technological platform, implementation research is now warranted to scale up interventions in real-world settings to eradicate vitamin D deficiency.
Keywords: 25-hydroxyvitamin D; bio-fortification; dietary modelling; dietary requirements; food fortification; vitamin D.
Conflict of interest statement
The authors declare no conflict of interest. The funder had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
References
-
- Autier P., Mullie P., Macacu A., Dragomir M., Boniol M., Coppens K., Pizot C., Boniol M. Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5:986–1004. doi: 10.1016/S2213-8587(17)30357-1. - DOI - PubMed
-
- Manson J.E., Bassuk S.S., Lee I.M., Cook N.R., Albert M.A., Gordon D., Zaharris E., Macfadyen J.G., Danielson E., Lin J., et al. The vitamin D and OmegA-3 TriaL (VITAL): Rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp. Clin. Trials. 2012;33:159–171. doi: 10.1016/j.cct.2011.09.009. - DOI - PMC - PubMed
-
- Institute of Medicine . In: Dietary Reference Intakes for Calcium and Vitamin D. Ross A.C., Taylor C.L., Yaktine A.L., Del Valle H.B., editors. National Academies Press; Washington, DC, USA: 2011. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical