Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 23;8(1):15643.
doi: 10.1038/s41598-018-33678-3.

Sensory attenuation in Parkinson's disease is related to disease severity and dopamine dose

Collaborators, Affiliations

Sensory attenuation in Parkinson's disease is related to disease severity and dopamine dose

Noham Wolpe et al. Sci Rep. .

Erratum in

Abstract

Abnormal initiation and control of voluntary movements are among the principal manifestations of Parkinson's disease (PD). However, the processes underlying these abnormalities and their potential remediation by dopamine treatment remain poorly understood. Normally, movements depend on the integration of sensory information with the predicted consequences of action. This integration leads to a suppression in the intensity of predicted sensations, reflected in a 'sensory attenuation'. We examined this integration process and its relation to dopamine in PD, by measuring sensory attenuation. Patients with idiopathic PD (n = 18) and population-derived controls (n = 175) matched a set of target forces applied to their left index finger by a torque motor. To match the force, participants either pressed with their right index finger ('Direct' condition) or moved a knob that controlled a motor through a linear potentiometer ('Slider' condition). We found that despite changes in sensitivity to different forces, overall sensory attenuation did not differ between medicated PD patients and controls. Importantly, the degree of attenuation was negatively related to PD motor severity but positively related to individual patient dopamine dose, as measured by levodopa dose equivalent. The results suggest that dopamine could regulate the integration of sensorimotor prediction with sensory information to facilitate the control of voluntary movements.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Force matching task illustration. Illustration of the force matching task. In each trial, a torque motor pseudorandomly applied one of four force levels (target force) through a lever to the participants’ left index finger. Participants were asked to match the force they had just sensed (matched force) either by pressing the lever with their right index finger (‘Direct’ condition); or by sliding a linear potentiometer which controlled the torque motor (‘Slider’ condition).
Figure 2
Figure 2
Differences in sensorimotor attenuation between PD patients and controls. (A) Standard boxplots showing the distribution of mean force overcompensation values across all patients and controls in the Direct (shades of blue) and Slider (shades of red) conditions. Positive value indicates sensory attenuation. (B) Mean regression plots of matched versus target force in the Direct and Slider conditions for both groups. Colour scheme is the same as in (A). Dashed line indicates the line of equality. Error bars indicate ± 2 standard error of group mean. Control data points and error bars are offset by 2 pixels for illustration.
Figure 3
Figure 3
Association between dopamine and patient attenuation. (A) Illustration of the standardised beta estimates of all independent variable coefficients included in the multiple regression model (R2adj = 0.40), predicting Direct intercept. Clinical variables of interest were disease severity, which had a negative effect on attenuation, and levodopa doses, which had a positive effect on attenuation. Error bars indicate ± 1 standard error of group mean. LDE = Levodopa dose equivalent. Significance level indicated by *P  <  0.05; **P  <  0.01; ns = non-significant. (B) Illustration of the relationship between Direct force overcompensation and levodopa dose equivalent, before entered into the regression model.

References

    1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:368–376. doi: 10.1136/jnnp.2007.131045. - DOI - PubMed
    1. Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann. Neurol. 1997;41:58–64. doi: 10.1002/ana.410410111. - DOI - PubMed
    1. Garbarini F, et al. Moving’ a paralysed hand: bimanual coupling effect in patients with anosognosia for hemiplegia. Brain. 2012;135:1486–97. doi: 10.1093/brain/aws015. - DOI - PubMed
    1. Garbarini F, Piedimonte A, Dotta M, Pia L, Berti A. Dissociations and similarities in motor intention and motor awareness: the case of anosognosia for hemiplegia and motor neglect. J. Neurol. Neurosurg. Psychiatry. 2013;84:416–419. doi: 10.1136/jnnp-2012-302838. - DOI - PubMed
    1. Wolpe Noham, Moore James W., Rae Charlotte L., Rittman Timothy, Altena Ellemarije, Haggard Patrick, Rowe James B. The medial frontal-prefrontal network for altered awareness and control of action in corticobasal syndrome. Brain. 2013;137(1):208–220. doi: 10.1093/brain/awt302. - DOI - PMC - PubMed

Publication types