Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jun;327(6122):526-9.
doi: 10.1038/327526a0.

Different recombination site specificity of two developmentally regulated genome rearrangements

Different recombination site specificity of two developmentally regulated genome rearrangements

J W Golden et al. Nature. 1987 Jun.

Abstract

In the absence of a combined nitrogen source, such as ammonia, approximately every tenth vegetative cell along filaments of the cyanobacterium Anabaena develops into a heterocyst, a terminally differentiated cell that is morphologically and biochemically specialized for nitrogen fixation. At least two specific DNA rearrangements involving the nitrogen-fixation (nif) genes occur during heterocyst differentiation, one within the nifD gene and the other near the nifS gene. The two rearrangements have several properties in common. Both occur quantitatively in all heterocyst genomes, both occur at approximately the same developmental time, late in the process of heterocyst differentiation, and both result from site-specific recombination between short repeated DNA sequences. We report here the nucleotide sequences found at the site of recombination near the nifS gene. These sequences differ from those found previously for the nifD rearrangement, suggesting that the two rearrangements are catalysed by different enzymes and may be regulated independently. We also show that the nifS gene is transcribed only from rearranged genomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources