Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2019 Jan;212(1):44-51.
doi: 10.2214/AJR.18.20260. Epub 2018 Oct 24.

JOURNAL CLUB: Use of Gradient Boosting Machine Learning to Predict Patient Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Information

Affiliations
Multicenter Study

JOURNAL CLUB: Use of Gradient Boosting Machine Learning to Predict Patient Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Information

Yuan Xie et al. AJR Am J Roentgenol. 2019 Jan.

Abstract

Objective: When treatment decisions are being made for patients with acute ischemic stroke, timely and accurate outcome prediction plays an important role. The optimal rehabilitation strategy also relies on long-term outcome predictions. The decision-making process involves numerous biomarkers including imaging features and demographic information. The objective of this study was to integrate common stroke biomarkers using machine learning methods and predict patient recovery outcome at 90 days.

Materials and methods: A total of 512 patients were enrolled in this retrospective study. Extreme gradient boosting (XGB) and gradient boosting machine (GBM) models were used to predict modified Rankin scale (mRS) scores at 90 days using biomarkers available at admission and 24 hours. Feature selections were performed using a greedy algorithm. Fivefold cross validation was applied to estimate model performance.

Results: For binary prediction of an mRS score of greater than 2 using biomarkers available at admission, XGB and GBM had an AUC of 0.746 and 0.748, respectively. Adding the National Institutes of Health Stroke Score at 24 hours and performing feature selection improved the AUC of XGB to 0.884 and the AUC of GBM to 0.877. With the addition of the recanalization outcome, XGB's AUC improved to 0.807 for nonrecanalized patients and dropped to 0.670 for recanalized patients. GBM's AUC improved to 0.781 for nonrecanalized patients and dropped to 0.655 for recanalized patients.

Conclusion: Decision tree-based GBMs can predict the recovery outcome of stroke patients at admission with a high AUC. Breaking down the patient groups on the basis of recanalization and nonrecanalization can potentially help with the treatment decision process.

Keywords: CT; machine learning; modified Rankin scale; prediction; stroke.

PubMed Disclaimer

Publication types