Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence
- PMID: 30355302
- PMCID: PMC6201504
- DOI: 10.1186/s12864-018-5112-0
Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence
Abstract
Background: Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host.
Results: Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21-25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi.
Conclusions: Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids.
Keywords: Comparative genomics; Genome sequencing; Trypanosomatids.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no completing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures





Similar articles
-
Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi.Int J Parasitol. 2018 Jun;48(7):569-584. doi: 10.1016/j.ijpara.2017.12.008. Epub 2018 Mar 13. Int J Parasitol. 2018. PMID: 29544703
-
Comparative Analysis of the Secretome and Interactome of Trypanosoma cruzi and Trypanosoma rangeli Reveals Species Specific Immune Response Modulating Proteins.Front Immunol. 2020 Aug 27;11:1774. doi: 10.3389/fimmu.2020.01774. eCollection 2020. Front Immunol. 2020. PMID: 32973747 Free PMC article.
-
The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members.Infect Genet Evol. 2016 Jan;37:266-74. doi: 10.1016/j.meegid.2015.11.024. Epub 2015 Dec 2. Infect Genet Evol. 2016. PMID: 26640033
-
Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.Acta Trop. 2009 May-Jun;110(2-3):137-47. doi: 10.1016/j.actatropica.2008.10.001. Epub 2008 Oct 15. Acta Trop. 2009. PMID: 18992212 Review.
-
Multigene families in Trypanosoma cruzi and their role in infectivity.Infect Immun. 2012 Jul;80(7):2258-64. doi: 10.1128/IAI.06225-11. Epub 2012 Mar 19. Infect Immun. 2012. PMID: 22431647 Free PMC article. Review.
Cited by
-
An algorithm for annotation and classification of T. cruzi MASP sequences: towards a better understanding of the parasite genetic variability.BMC Genomics. 2025 Feb 24;26(1):194. doi: 10.1186/s12864-025-11384-5. BMC Genomics. 2025. PMID: 39994548 Free PMC article.
-
Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished?Trop Med Infect Dis. 2020 Aug 6;5(3):129. doi: 10.3390/tropicalmed5030129. Trop Med Infect Dis. 2020. PMID: 32781761 Free PMC article. Review.
-
Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications.Genes (Basel). 2020 Oct 14;11(10):1196. doi: 10.3390/genes11101196. Genes (Basel). 2020. PMID: 33066599 Free PMC article. Review.
-
The Elusive Trypanosoma cruzi Disperse Gene Protein Family (DGF-1).Pathogens. 2023 Feb 10;12(2):292. doi: 10.3390/pathogens12020292. Pathogens. 2023. PMID: 36839564 Free PMC article. Review.
-
PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile.Commun Biol. 2021 Mar 11;4(1):324. doi: 10.1038/s42003-021-01762-6. Commun Biol. 2021. PMID: 33707618 Free PMC article.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous