Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May;21(5):497-503.
doi: 10.1002/ana.410210514.

Inactivation of GM1-ganglioside beta-galactosidase by a specific inhibitor: a model for ganglioside storage disease

Inactivation of GM1-ganglioside beta-galactosidase by a specific inhibitor: a model for ganglioside storage disease

H S Singer et al. Ann Neurol. 1987 May.

Abstract

This study was designed to establish an in vitro model with biochemical and morphological similarities to the human neurodegenerative disease GM1 gangliosidosis. Utilizing a specific inactivator of the lysosomal enzyme GM1-ganglioside beta-galactosidase (beta-D-galactopyranosylmethyl-p-nitrophenyltriazene [beta-GalMNT]) and neuroblastoma X glioma hybrid cells (NG108-15), we suppressed beta-galactosidase activity for up to 72 hours. Coincidental with suppression of this enzyme to levels less than 1% of control, we found up to a nine-fold accumulation of its substrate, the GM1-ganglioside, and the ultrastructural appearance of membranous cytoplasmic bodies. beta-GalMNT treatment suppressed growth but had little effect on the specific activity of choline acetyltransferase, lactate dehydrogenase, or other lysosomal enzymes including galactosylceramidase. This model should permit studies of the neurophysiological effects of increased ganglioside accumulation and their reversibility.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources