A room-temperature single-photon source based on strongly interacting Rydberg atoms
- PMID: 30361371
- DOI: 10.1126/science.aau1949
A room-temperature single-photon source based on strongly interacting Rydberg atoms
Erratum in
-
Erratum for the Report: "A room-temperature single-photon source based on strongly interacting Rydberg atoms" by F. Ripka, H. Kübler, R. Löw, T. Pfau.Science. 2020 Mar 6;367(6482):eabb4382. doi: 10.1126/science.abb4382. Science. 2020. PMID: 32139518 No abstract available.
Retraction in
-
Retraction.Science. 2024 Aug 16;385(6710):721. doi: 10.1126/science.adr6434. Epub 2024 Aug 15. Science. 2024. PMID: 39146399 No abstract available.
Abstract
Tailored quantum states of light can be created via a transfer of collective quantum states of matter to light modes. Such collective quantum states emerge in interacting many-body systems if thermal fluctuations are overcome by sufficient interaction strengths. Therefore, ultracold temperatures or strong confinement are typically required. We show that the exaggerated interactions between Rydberg atoms allow for collective quantum states even above room temperature. The emerging Rydberg interactions lead both to suppression of multiple Rydberg state excitations and destructive interference due to polariton dephasing. We experimentally implemented a four-wave mixing scheme to demonstrate an on-demand single-photon source. The combination of glass cell technology, identical atoms, and operation around room temperature promises scalability and integrability. This approach has the potential for various applications in quantum information processing and communication.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources