Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2018 Oct 26;10(10):CD007554.
doi: 10.1002/14651858.CD007554.pub3.

Biocompatible dialysis fluids for peritoneal dialysis

Affiliations
Meta-Analysis

Biocompatible dialysis fluids for peritoneal dialysis

Htay Htay et al. Cochrane Database Syst Rev. .

Abstract

Background: Biocompatible peritoneal dialysis (PD) solutions, including neutral pH, low glucose degradation product (GDP) solutions and icodextrin, have previously been shown to favourably influence some patient-level outcomes, albeit based on generally sub-optimal quality studies. Several additional randomised controlled trials (RCT) evaluating biocompatible solutions in PD patients have been published recently. This is an update of a review first published in 2014.

Objectives: This review aimed to look at the benefits and harms of biocompatible PD solutions in comparison to standard PD solutions in patients receiving PD.

Search methods: The Cochrane Kidney and Transplant Specialised Register was searched up to 12 February 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Specialised Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register Search Portal and ClinicalTrials.gov.

Selection criteria: All RCTs and quasi-RCTs in adults and children comparing the effects of biocompatible PD solutions (neutral pH, lactate-buffered, low GDP; neutral pH, bicarbonate(± lactate)-buffered, low GDP; glucose polymer (icodextrin)) in PD were included. Studies of amino acid-based solutions were excluded.

Data collection and analysis: Two authors extracted data on study quality and outcomes. Summary effect estimates were obtained using a random-effects model, and results were expressed as risk ratios and 95% confidence intervals (CI) for categorical variables, and mean differences (MD) or standardised mean differences (SMD) and 95% CI for continuous variables.

Main results: This review update included 42 eligible studies (3262 participants), including six new studies (543 participants). Overall, 29 studies (1971 participants) compared neutral pH, low GDP PD solution with conventional PD solution, and 13 studies (1291 participants) compared icodextrin with conventional PD solution. Risk of bias was assessed as high for sequence generation in three studies, allocation concealment in three studies, attrition bias in 21 studies, and selective outcome reporting bias in 16 studies.Neutral pH, low GDP versus conventional glucose PD solutionUse of neutral pH, low GDP PD solutions improved residual renal function (RRF) preservation (15 studies, 835 participants: SMD 0.19, 95% CI 0.05 to 0.33; high certainty evidence). This approximated to a mean difference in glomerular filtration rate of 0.54 mL/min/1.73 m2 (95% CI 0.14 to 0.93). Better preservation of RRF was evident at all follow-up durations with progressively greater preservation observed with increasing follow up duration. Neutral pH, low GDP PD solution use also improved residual urine volume preservation (11 studies, 791 participants: MD 114.37 mL/day, 95% CI 47.09 to 181.65; high certainty evidence). In low certainty evidence, neutral pH, low GDP solutions may make little or no difference to 4-hour peritoneal ultrafiltration (9 studies, 414 participants: SMD -0.42, 95% CI -0.74 to -0.10) which approximated to a mean difference in peritoneal ultrafiltration of 69.72 mL (16.60 to 122.00 mL) lower, and may increase dialysate:plasma creatinine ratio (10 studies, 746 participants: MD 0.01, 95% CI 0.00 to 0.03), technique failure or death compared with conventional PD solutions. It is uncertain whether neutral pH, low GDP PD solution use led to any differences in peritonitis occurrence, hospitalisation, adverse events (6 studies, 519 participants) or inflow pain (1 study, 58 participants: RR 0.51, 95% CI 0.24 to 1.08).Glucose polymer (icodextrin) versus conventional glucose PD solutionIn moderate certainty evidence, icodextrin probably reduced episodes of uncontrolled fluid overload (2 studies, 100 participants: RR 0.30, 95% CI 0.15 to 0.59) and augmented peritoneal ultrafiltration (4 studies, 102 participants: MD 448.54 mL/d, 95% CI 289.28 to 607.80) without compromising RRF (4 studies, 114 participants: SMD 0.12, 95% CI -0.26 to 0.49; low certainty evidence) which approximated to a mean creatinine clearance of 0.30 mL/min/1.73m2 higher (0.65 lower to 1.23 higher) or urine output (3 studies, 69 participants: MD -88.88 mL/d, 95% CI -356.88 to 179.12; low certainty evidence). It is uncertain whether icodextrin use led to any differences in adverse events (5 studies, 816 participants) technique failure or death.

Authors' conclusions: This updated review strengthens evidence that neutral pH, low GDP PD solution improves RRF and urine volume preservation with high certainty. These effects may be related to increased peritoneal solute transport and reduced peritoneal ultrafiltration, although the evidence for these outcomes is of low certainty due to significant heterogeneity and suboptimal methodological quality. Icodextrin prescription increased peritoneal ultrafiltration and mitigated uncontrolled fluid overload with moderate certainty. The effects of either neutral pH, low GDP solution or icodextrin on peritonitis, technique survival and patient survival remain uncertain and require further high quality, adequately powered RCTs.

PubMed Disclaimer

Conflict of interest statement

  1. Htay Htay: none known

  2. Professor David Johnson has previously received consultancy fees, research grants, speaker’s honoraria and travel sponsorships from Baxter Healthcare and Fresenius Medical Care unrelated to the preparation of this review.

  3. Kathryn J Wiggins: none known

  4. Sunil V Badve: none known

  5. Jonathan C Craig: none known

  6. Giovanni FM Strippoli: none known

  7. Yeoungjee Cho: none known

Figures

1
1
Flow diagram. * Non‐RCTs excluded from the 2018 update
2
2
Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.
3
3
Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
4
4
Funnel plot of comparison: 1 Low GDP (all buffer types) versus standard glucose dialysate, outcome: 1.1 Residual renal function.
1.1
1.1. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 1 Residual renal function.
1.2
1.2. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 2 Residual renal function: up to 12 months.
1.3
1.3. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 3 Residual renal function: 12 months up to 24 months.
1.4
1.4. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 4 Residual renal function: 24 months and beyond.
1.5
1.5. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 5 Residual renal function: PD fluid types.
1.6
1.6. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 6 Urine volume.
1.7
1.7. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 7 Urine volume: up to 12 months.
1.8
1.8. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 8 Urine volume: 12 months up to 24 months.
1.9
1.9. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 9 Urine volume: 24 months and beyond.
1.10
1.10. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 10 Urine volume: PD fluid types.
1.11
1.11. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 11 Anuria.
1.12
1.12. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 12 Peritoneal ultrafiltration: 4 hours.
1.13
1.13. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 13 4‐hour dialysate:plasma creatinine (2.27%, 2.4%, or 2.5% glucose).
1.14
1.14. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 14 4‐hour dialysis:plasma creatinine (patient characteristics).
1.15
1.15. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 15 4‐hour dialysis:plasma creatinine (PD fluid types).
1.16
1.16. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 16 4‐hour dialysis:plasma creatinine (study design).
1.17
1.17. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 17 Peritoneal creatinine clearance [L/wk/1.73 m²].
1.18
1.18. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 18 Peritoneal Kt/V urea.
1.19
1.19. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 19 Incidence of peritonitis.
1.20
1.20. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 20 Peritonitis rate (episodes/total patient‐months).
1.21
1.21. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 21 Incidence of peritonitis: attrition bias risk.
1.22
1.22. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 22 Inflow pain.
1.23
1.23. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 23 Hospitalisation.
1.24
1.24. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 24 Technique failure (death‐censored).
1.25
1.25. Analysis
Comparison 1 Low GDP (all buffer types) versus standard glucose dialysate, Outcome 25 Death (all causes).
2.1
2.1. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 1 Daily ultrafiltration.
2.2
2.2. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 2 Uncontrolled fluid overload.
2.3
2.3. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 3 Residual renal function.
2.4
2.4. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 4 Urine volume.
2.6
2.6. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 6 Peritoneal creatinine clearance.
2.7
2.7. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 7 Episodes of peritonitis.
2.8
2.8. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 8 Rash.
2.9
2.9. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 9 Technique failure (death‐censored).
2.10
2.10. Analysis
Comparison 2 Glucose polymer (icodextrin) versus standard glucose dialysate, Outcome 10 Death (all causes).

Update of

References

References to studies included in this review

Bajo 2011 {published data only}
    1. Bajo MA, Priez‐Lozano ML, Albar‐Vizcaino P, Peso G, Castro MJ, Gonzalez‐Mateo G, et al. Low‐GDP peritoneal dialysis fluid ('balance') has less impact in vitro and ex vivo on epithelial‐to‐mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrology Dialysis Transplantation 2011;26(1):282‐91. [MEDLINE: ] - PubMed
balANZ 2010 {published and unpublished data}
    1. Brown F, Johnson DW. A randomized controlled trial to determine whether treatment with at neutral pH, low glucose degradation product dialysate (balance) prolongs residual renal function in peritoneal dialysis patients. Peritoneal Dialysis International 2006;26(1):112‐3. [MEDLINE: ] - PubMed
    1. Cho Y, Johnson DW, Vesey DA, Hawley CM, Clarke M, Topley N, et al. Utility of urinary biomarkers in predicting loss of residual renal function: the balANZ trial. Peritoneal Dialysis International 2015;35(2):159‐71. [MEDLINE: ] - PMC - PubMed
    1. Cho Y, Johnson DW, Vesey DA, Hawley CM, Pascoe EM, Clarke M, et al. Dialysate interleukin‐6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrology 2014;15:8. [MEDLINE: ] - PMC - PubMed
    1. Howard K, Hayes A, Cho Y, Cass A, Clarke M, Johnson DW. Economic evaluation of neutral‐pH, low‐glucose degradation product peritoneal dialysis solutions compared with standard solutions: a secondary analysis of the balANZ Trial. American Journal of Kidney Diseases 2015;65(5):773‐9. [MEDLINE: ] - PubMed
    1. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. Journal of the American Society of Nephrology 2012;23(6):1097‐107. [MEDLINE: ] - PMC - PubMed
BALNET 2008 {published and unpublished data}
    1. Kim S, Bang K, Kim SJ, Oh J, Chung W, Joo KW, et al. Effect of low GDP fluid use on residual renal function in incident peritoneal dialysis patients over 24‐month period [abstract no: F‐PO1627]. Journal of the American Society of Nephrology 2008;19(Abstracts Issue):473A.
    1. Kim S, Kim SG, Oh JE, Chung W, Oh K, Kim YS, et al. Clinical benefits of a low glucose degradation products solution in patients starting peritoneal dialysis: preliminary report [abstract no: TH‐PO809]. Journal of American Society of Nephrology 2006;17(Abstracts):278A. [CENTRAL: CN‐00740544]
    1. Kim S, Oh J, Kim SG, Chung W, Ahn C, Kim SG, et al. Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1‐year study. Nephrology Dialysis Transplantation 2009;24(9):2899‐908. [MEDLINE: ] - PubMed
    1. Kim S, Oh K, Kim SG, Oh JE, Chung W, Yang J, et al. Preserved residual renal function in incident peritoneal dialysis patients using low glucose degradation products solutions [abstract no: SA‐PO796]. Journal of the American Society of Nephrology 2007;18(Abstracts):518A.
    1. Kim S, Oh KH, Oh J, Kim SJ, Chung W, Song YR, et al. Biocompatible peritoneal dialysis solution preserves residual renal function. American Journal of Nephrology 2012;36(4):305‐16. [MEDLINE: ] - PubMed
Bredie 2001 {published data only}
    1. Bredie SJ, Bosch F, Demacker PN, Stalenhoef AF, Leusen R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism [abstract]. Journal of the American Society of Nephrology 2000;11(Sept):203‐4A. [CENTRAL: CN‐00550440] - PubMed
    1. Bredie SJ, Bosch FH, Demacker PN, Stalenhoef AF. Effects on peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism [abstract]. Netherlands Journal of Medicine 2001;58:A11. [CENTRAL: CN‐00716064] - PubMed
    1. Bredie SJ, Bosch FH, Demacker PN, Stalenhoef AF, Leusen R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Peritoneal Dialysis International 2001;21(3):275‐81. [MEDLINE: ] - PubMed
Cancarini 1998 {published data only}
    1. Cancarini GC, Faict D, Vos C, Guiberteau R, Tranaeus A, Minetti L, et al. Clinical evaluation of a peritoneal dialysis solution with 33 mmol/L bicarbonate. Peritoneal Dialysis International 1998;18(6):576‐82. [MEDLINE: ] - PubMed
Carrasco 2001 {published data only}
    1. Carrasco AM, Rubio MA, Sanchez Tommero JA, Fernandez Giron F, Gonzalez Rico M, Peso Gilsanz G, et al. Acidosis correction with a new 25 mmol/l bicarbonate/15 mmol/l lactate peritoneal dialysis solution. Peritoneal Dialysis International 2001;21(6):546‐53. [MEDLINE: ] - PubMed
Cho 2013 {published data only}
    1. Cho KH, Do JY, Park JW, Yoon KW, Kim YL. The effect of low‐GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients.[Erratum appears in Perit Dial Int. 2013 Sep‐Oct;33(5):473‐4]. Peritoneal Dialysis International 2013;33(4):382‐90. [MEDLINE: ] - PMC - PubMed
Choi 2008 {published data only}
    1. Choi HY, Kim DK, Lee TH, Han SH, Lee SC, Lee JE, et al. The clinical impacts of novel peritoneal dialysis fluids (PDFs) with neutral pH and low glucose degradation product (GDP) concentration (Balance®) [abstract no: SP708]. Nephrology Dialysis Transplantation 2006;21(Suppl 4):iv254. [CENTRAL: CN‐00653807]
    1. Choi HY, Kim DK, Lee TH, Moon SJ, Han SH, Lee JE, et al. The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Peritoneal Dialysis International 2008;28(2):174‐82. [MEDLINE: ] - PubMed
    1. Lee HY, Choi HY, Kim JS, Han SH, Lee SC, Lee JE, et al. The clinical usefulness of peritoneal dialysis fluids (PDFs) with neutral pH and low glucose degradation product (GDP) Concentration‐Balance® [abstract no: SA‐FC138]. Journal of the American Society of Nephrology 2005;16:112A. [CENTRAL: CN‐00653808]
Cnossen 2011 {published data only}
    1. Cnossen TT, Gladziwa U, Kerkhof JJ, Schalkwijk CG, Scheijen J, Amersfoort J, et al. The influence of bicarbonate/lactate‐buffered PD fluids on NƐ‐(carboxyethyl)lysine and NƐ‐(carboxymethyl)lysine in peritoneal effluent. Peritoneal Dialysis International 2011;31(2):189‐93. [MEDLINE: ] - PubMed
Coles 1997 {published data only}
    1. Coles GA, Gokal R, Ogg C, Jani F, O'Donoghue DT, Cancarini GC, et al. A randomized controlled trial of a bicarbonate‐ and a bicarbonate/lactate‐containing dialysis solution in CAPD.[Erratum appears in Perit Dial Int 1997 May‐Jun;17(3):223 Note: Cancarinu GC [corrected to Cancarini GC]]. Peritoneal Dialysis International 1997;17(1):48‐51. [MEDLINE: ] - PubMed
    1. Coles GA, O'Donoghue DJ, Pritchard N, Ogg CS, Jani FM, Gokal R, et al. A controlled trial of two bicarbonate‐containing dialysis fluids for CAPD‐‐final report. Nephrology Dialysis Transplantation 1998;13(12):3165‐71. [MEDLINE: ] - PubMed
    1. Mackenzie RK, Jones S, Moseley A, Holmes CJ, Argyle R, Williams JD, et al. In vivo exposure to bicarbonate/lactate‐ and bicarbonate‐buffered peritoneal dialysis fluids improves ex vivo peritoneal macrophage function. American Journal of Kidney Diseases 2000;35(1):112‐21. [MEDLINE: ] - PubMed
    1. Topley N, Mackenzie R, Williams JD, Coles GA, Tranaeus A, Faict D, et al. In vivo exposure to bicarbonate/lactate‐buffered PDF (TBL) improves ex vivo PMO function, compared to bicarbonate‐(TB) or lactate‐buffered PDF (PD4) [abstract]. Nephrology 1997;3(Suppl 1):S408. [CENTRAL: CN‐00461877]
    1. Williams JD, Holmes CJ, Jones S, Mackenzie R, Coles GA, Faict D, et al. Long‐term in vivo exposure to bicarbonate/lactate dialysis fluid improves ex vivo peritoneal macrophage (PMO) TNFa secretion [abstract]. Journal of the American Society of Nephrology 1998;9(Program & Abstracts):292A. [CENTRAL: CN‐00448375]
Davies 2003 {published data only (unpublished sought but not used)}
    1. Davies S, Plum J, Heimburger O. Increasing our understanding of the mechanism of action of icodextrin (ICO) [abstract no: F‐PO407]. Journal of the American Society of Nephrology 2004;15(Oct):156A. [CENTRAL: CN‐00583222]
    1. Davies S, Woodrow G, Johansson C, Williams P, Divino J. Icodextrin improves fluid balance in PD patients [abstract no: O52]. Nephrology Dialysis Transplantation 2002;17(Suppl 1):17. [CENTRAL: CN‐00509151]
    1. Davies SJ, Garcia Lopez E, Woodrow G, Donovan K, Plum J, Williams P, et al. Longitudinal relationships between fluid status, inflammation, urine volume and plasma metabolites of icodextrin in patients randomized to glucose or icodextrin for the long exchange. Nephrology Dialysis Transplantation 2008;23(9):2982‐8. [MEDLINE: ] - PubMed
    1. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double‐blind randomized controlled trial. Journal of the American Society of Nephrology 2003;14(9):2338‐44. [MEDLINE: ] - PubMed
    1. Davies SJ, Woodrow G, Plum J, Heimburger O, Donovan K, Divino J. Icodextrin improves fluid status in PD patients [abstract no: SU‐PO798]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):632A‐3A. [CENTRAL: CN‐00445007]
di Paolo 2000 {published data only}
    1. Paolo B, Stingone A, Vito R, Stuard S, D'Angelo B, Caravelli L, et al. Cardiovascular and hemodynamic profile related to hypotensive effect long term of icodextrine (ICO) in CAPD patients [abstract]. Journal of the American Society of Nephrology 2000;11(Sept):206A. [CENTRAL: CN‐00550665]
DIUREST 2010 {published data only (unpublished sought but not used)}
    1. Haag‐Weber M, Haug U, Wieslander A, Nabut J, Deppisch R, DIUREST Study Group. Decline of residual renal function (RRF) in peritoneal dialysis (PD) patients (pts) depends on uptake of carbonyl compounds (CC) from the peritoneal cavity: first data of a prospective clinical trial [abstract]. Journal of the American Society of Nephrology 2003;14:476A‐7A. [CENTRAL: CN‐00756119]
    1. Haag‐Weber M, Kramer R, Haake R, Islam MS, Prischl F, Haug U, et al. Low‐GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrology Dialysis Transplantation 2010;25(7):2288‐96. [MEDLINE: ] - PubMed
EURO‐BALANCE 2004 {published data only (unpublished sought but not used)}
    1. Mackenzie RK, Craig KJ, Lage C, Williams JD, Schaub T, Passlick‐Deetjen J, et al. Treatment with low GDP solution (CAPD balance) is associated with an increase in effluent CA125 and a decrease in HA content: data from the multi centre European Balance Trial [abstract no: F‐P0685]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):199A. [CENTRAL: CN‐00446522]
    1. Mackenzie RM, Lage C, Craig KJ, Williams JD, Schaub T, Passlick‐Deetjen J, et al. Continuous treatment with low GDP solution (CAPD Balance®) is associated with an increase in effluent CA125 and a decrease in HA content: data from the Multicenter European Balance Trial [abstract]. Peritoneal Dialysis International 2002;22(1):101. [CENTRAL: CN‐00446523]
    1. Williams JD, Craig KJ, Passlick‐Deetjen J, Topley N, Lage C, Pischetsrieder M, et al. Reduced systemic AGE formation with a low GDP solution (CAPD balance): data from the multicentre European Balance Trial [abstract no: F‐PO683]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):199A. [CENTRAL: CN‐00448374]
    1. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, et al. The Euro‐Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney International 2004;66(1):408‐18. [MEDLINE: ] - PubMed
    1. Witowski J, Korybalska K, Ksiazek K, Wisniewska‐Elnur J, Jorres A, Lage C, et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrology Dialysis Transplantation 2004;19(4):917‐24. [MEDLINE: ] - PubMed
Fan 2008 {published data only (unpublished sought but not used)}
    1. Fan SL, Pile T, Punzalan S, Raftery MJ, Yaqoob MM. Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney International 2008;73(2):200‐6. [MEDLINE: ] - PubMed
    1. Srivastava S, Hildebrand S, Fan SL. Long‐term follow‐up of patients randomized to biocompatible or conventional peritoneal dialysis solutions show no difference in peritonitis or technique survival. Kidney International 2011;80(9):986‐91. [MEDLINE: ] - PubMed
Feriani 1998 {published and unpublished data}
    1. Feriani M, Kirchgessner J, Greca G, Passlick‐Deetjen J. Randomized long‐term evaluation of bicarbonate‐buffered CAPD solution. Kidney International 1998;54(5):1731‐8. [MEDLINE: ] - PubMed
    1. Feriani M, Pablick‐Deetjen J, Brown C, Buoncristiani U, Paolo N, Gahl G, et al. An open controlled randomized clinical trial with bicarbonate CAPD solutions: interim results [abstract]. Journal of the American Society of Nephrology 1994;5(3):414. [CENTRAL: CN‐00550652]
    1. Feriani M, Passlick‐Deetjen J, Kirchgessner J. Long term safety and efficacy of bicarbonate buffered peritoneal dialysis solutions [abstract]. Nephrology Dialysis Transplantation 1996;11(6):A253. [CENTRAL: CN‐00261316]
    1. Passlick‐Deetjen J, Feriani M. Experiences with bicarbonate solutions in peritoneal dialysis [Erfahrungen mit bikarbonathaltigen peritonealdialyselosungen]. Nieren‐und Hochdruckkrankheiten 1994;23(Suppl 2):S82‐7. [EMBASE: 1995014810]
Fernandez‐Perpen 2012 {published and unpublished data}
    1. Fernandez Perpen A, Sanchez Tomero JA, Bajo MA, Perez Lozano ML, Peso G, Albar P, et al. Effects of bicavera (BV) dialysate for peritoneal dialysis on the epithelial‐to‐mesenchymal transition (EMT) of the mesothelial cell (MC) ex vivo [abstract]. NDT Plus 2010;3:iii477. [EMBASE: 70484718]
    1. Fernandez‐Perpen A, Perez‐Lozano ML, Bajo MA, Albar‐Vizcaino P, Sandovar Correa P, Peso G, et al. Influence of bicarbonate/low‐GDP peritoneal dialysis fluid (Bicavera) on in vitro and ex vivo epithelial‐to‐mesenchymal transition of mesothelial cells. Peritoneal Dialysis International 2012;32(3):292‐304. [MEDLINE: ] - PMC - PubMed
Finkelstein 2005 {published data only (unpublished sought but not used)}
    1. Finkelstein F, Healy H, Abu‐Alfa A, Ahmad S, Brown F, Gehr T, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. Journal of the American Society of Nephrology 2005;16(2):546‐54. [MEDLINE: ] - PubMed
Fusshoeller 2004 {published data only}
    1. Fusshoeller A, Plail M, Ausobski G, Grabensee B, Plum J. Biocompatibility pattern of neutral bicarbonate/lactate buffered peritoneal dialysis solution in chronic APD patients ‐ a prospective; randomized; cross over study [abstract no: M672]. Nephrology Dialysis Transplantation 2003;18(Suppl 4):214. [CENTRAL: CN‐00782432]
    1. Fusshoeller A, Plail M, Grabensee B, Plum J. Biocompatibility pattern of a bicarbonate/lactate‐buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrology Dialysis Transplantation 2004;19(8):2101‐6. [MEDLINE: ] - PubMed
Kim 2003 {published data only}
    1. Do J, Cho K, Park J, Yoon K, Cho D, Kim Y. Local and systemic effects of neutral pH, low GDP dialysate in CAPD patients [abstract no: SA‐FC202]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):41A. [CENTRAL: CN‐00445121]
    1. Do J, Kim Y, Kim T, Park J, Yoon K, Park S. The effect of neutral pH, low GDPs dialysis solution on fluid, solute transport and edema control in CAPD patients [abstract no: SA‐PO337]. Journal of American Society of Nephrology 2004;15(Oct):375A. [CENTRAL: CN‐00583512]
    1. Do JY, Kim YL, Park JW, Chang KA, Lee SH, Ryu DH, et al. The association between the vascular endothelial growth factor‐to‐cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial‐to‐mesenchymal transition in continuous ambulatory peritoneal dialysis. Peritoneal Dialysis International 2008;28 Suppl 3:S101‐6. [MEDLINE: ] - PubMed
    1. Do JY, Kim YL, Park JW, Cho KH, Kim TW, Yoon KW, et al. The effect of low glucose degradation product dialysis solution on epithelial‐to‐mesenchymal transition in continuous ambulatory peritoneal dialysis patients. Peritoneal Dialysis International 2005;25 Suppl 3:S22‐5. [MEDLINE: ] - PubMed
    1. Kim C, Kim Y, Park S, Do J, Yoon K, Lee E, et al. Effects of low glucose degradation products (GDPs) dialysis solution on the levels of surrogate markers of peritoneal inflammation, integrity and angiogenesis. Preliminary report [abstract no: SA‐PO822]. Journal of the American Society of Nephrology 2003;14(Nov):479A. [CENTRAL: CN‐00583514] - PubMed
Konings 2003 {published data only}
    1. Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, Wall Bake AW, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney International 2003;63(4):1556‐63. [MEDLINE: ] - PubMed
    1. Konings CJ, Kooman JP, Schonck M, Sande FM, Hoorntje SJ, Leunissen KM. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters [abstract no: F‐PO719]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):206A. [CENTRAL: CN‐00446147]
    1. Konings CJ, Schalkwijk CG, Sande FM, Leunissen KM, Kooman JP. Influence of icodextrin on plasma and dialysate levels of NƐ‐(carboxymethyl)lysine and NƐ‐(carboxyethyl)lysine. Peritoneal Dialysis International 2005;25(6):591‐5. [MEDLINE: ] - PubMed
    1. Kooman JP, Schalkwijk CG, Konings CJ. The increase in plasma levels of NƐ‐(carboxymethyl)lysine during icodextrin treatment of peritoneal dialysis patients is not associated with increased plasma levels of vascular cell adhesion molecule‐1. Peritoneal Dialysis International 2006;26(3):410‐1. [MEDLINE: ] - PubMed
Lai 2012a {published data only}
    1. Lai KN, Lam MF, Leung JC, Chan LY, Lam CW, Chan IH, et al. A study of the clinical and biochemical profile of peritoneal dialysis fluid low in glucose degradation products. Peritoneal Dialysis International 2012;32(3):280‐91. [MEDLINE: ] - PMC - PubMed
Lin 2009a {published and unpublished data}
    1. Lin A, Qian J, Li X, Yu X, Liu W, Sun Y, et al. Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clinical Journal of The American Society of Nephrology: CJASN 2009;4(11):1799‐804. [MEDLINE: ] - PMC - PubMed
Mactier 1998 {published data only}
    1. Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindbergh M, Naik RB, et al. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney International 1998;53(4):1061‐7. [MEDLINE: ] - PubMed
    1. Sprosen TS, Mactier RA, Gokal R, Lindbergh M, Tranaeus A, Faict D. Treatment of infusion pain (InP) with novel bicarbonate containing PD solutions [abstract]. Journal of the American Society of Nephrology 1997;8(Program & Abstracts):273A. [CENTRAL: CN‐00447821]
MIDAS 1994 {published data only (unpublished sought but not used)}
    1. Armstrong A, Sayers JA, Scrimgeour AC. Reduction in the prevalence of CAPD symptoms during 6 months treatment with icodextrin [abstract]. Nephrology Dialysis Transplantation 1996;11(6):A240. [CENTRAL: CN‐00261303]
    1. Gokal R, Mistry CD, Peers EM. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Dialysis. Peritoneal Dialysis International 1995;15(6):226‐30. [MEDLINE: ] - PubMed
    1. Gokal R, Moberly J, Ogrinc F, Gordon A, Peers E, MIDAS Study Group. Improvement of hyperlipidemia with icodextrin use in CAPD patients [abstract]. Journal of the American Society of Nephrology 1998;9(Program & Abstracts):283A. [CENTRAL: CN‐00445499]
    1. Mistry CD, Gokal R, Peers E. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney International 1994;46(2):496‐503. [MEDLINE: ] - PubMed
Pajek 2008 {published and unpublished data}
    1. Pajek J, Kveder R, Bren A, Gucek A, Bucar M, Skoberne A, et al. Short‐term effects of bicarbonate/lactate‐buffered and conventional lactate‐buffered dialysis solutions on peritoneal ultrafiltration: a comparative crossover study. Nephrology Dialysis Transplantation 2009;24(5):1617‐25. [MEDLINE: ] - PubMed
    1. Pajek J, Kveder R, Bren A, Gucek A, Ihan A, Osredkar J, et al. Short‐term effects of a new bicarbonate/lactate‐buffered and conventional peritoneal dialysis fluid on peritoneal and systemic inflammation in CAPD patients: a randomized controlled study. Peritoneal Dialysis International 2008;28(1):44‐52. [MEDLINE: ] - PubMed
    1. Pajek J, Kveder R, Gucek A, Skoberne A, Bren A, Bucar M, et al. Cell‐free DNA in the peritoneal effluent of peritoneal dialysis solutions. Therapeutic Apheresis & Dialysis 2010;14(1):20‐6. [MEDLINE: ] - PubMed
Paniagua 2008 {published data only (unpublished sought but not used)}
    1. Orihuela O, Jesus V, Avila‐Diaz M, Cisneros A, Vicente‐Martinez M, Furlong MD, et al. Effect of icodextrin on heart rate variability in diabetic patients on peritoneal dialysis. Peritoneal Dialysis International 2014;34(1):57‐63. [MEDLINE: ] - PMC - PubMed
    1. Paniagua R, Orihuela O, Ventura MD, Avila‐Diaz M, Cisneros A, Vicente‐Martinez M, et al. Echocardiographic, electrocardiographic and blood pressure changes induced by icodextrin solution in diabetic patients on peritoneal dialysis. Kidney International ‐ Supplement 2008;73(108):S125‐30. [MEDLINE: ] - PubMed
    1. Paniagua R, Ventura MD, Avila‐Diaz M, Cisneros A, Vicente‐Martinez M, Furlong MD, et al. Icodextrin improves metabolic and fluid management in high and high‐average transport diabetic patients. Peritoneal Dialysis International 2009;29(4):422‐32. [MEDLINE: ] - PubMed
Park 2012a {published data only}
    1. Park SH, Do JY, Kim YH, Lee HY, Kim BS, Shin SK, et al. Effects of neutral pH and low‐glucose degradation product‐containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1‐year follow‐up study. Nephrology Dialysis Transplantation 2012;27(3):1191‐9. [MEDLINE: ] - PubMed
Plum 2002 {published data only}
    1. Plum J, Gentile S, Verger C, Brunkhorst R, Bahner U, Faller B, et al. Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. American Journal of Kidney Diseases 2002;39(4):862‐71. [MEDLINE: ] - PubMed
Posthuma 1997 {published data only}
    1. Peers E. Icodextrin plus glucose combinations for use in CAPD. Peritoneal Dialysis International 1997;17 Suppl 2:S68‐9. [MEDLINE: ] - PubMed
    1. Posthuma N, Verbrugh HA, Donker AJ, Dorp W, Dekker HA, Peers EM, et al. Peritoneal kinetics and mesothelial markers in CCPD using icodextrin for daytime dwell for two years. Peritoneal Dialysis International 2000;20(2):174‐80. [MEDLINE: ] - PubMed
    1. Posthuma N, ter Wee P, Donker AJ, Dekker HA, Oe PL, Verbrugh HA. Peritoneal defense using icodextrin or glucose for daytime dwell in CCPD patients. Peritoneal Dialysis International 1999;19(4):334‐42. [MEDLINE: ] - PubMed
    1. Posthuma N, ter Wee PM. Icodextrin (I) use in CCPD patients during peritonitis: serum disaccharide levels and ultrafiltration (UF) [abstract]. Nephrology Dialysis Transplantation 1997;12(9):A184. [CENTRAL: CN‐00261438] - PubMed
    1. Posthuma N, ter Wee PM, Donker AJ, Dekker HAT, Oe PL, Verhoef J, et al. Ex vivo peritoneal defense characteristics and peritonitis rate in CCPD patients using glucose or icodextrin as daytime dwell [abstract]. Journal of the American Society of Nephrology 1998;9(Program & Abstracts):223A. [CENTRAL: CN‐00447263]
Rippe 2001 {published data only}
    1. Rippe B, Christensson A, Haraldsson B, Simonsen O, Stelin G, Weiss L, et al. More Ca125 in dialysate after long‐term treatment with a new, less toxic PD‐fluid (PD‐bio) [abstract]. Nephrology Dialysis Transplantation 1997;12(9):A180. [CENTRAL: CN‐00509439]
    1. Rippe B, Christensson A, Haraldsson B, Simonsen O, Stelin G, Weiss L, et al. Patient dialysate CA 125 and hyaluronan (HA) after 1, 6 and 12 months of treatment with a PD‐fluid containing less cytotoxic glucose degradation products [abstract]. Journal of the American Society of Nephrology 1997;8(Program & Abstracts):182A. [CENTRAL: CN‐00447414]
    1. Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, et al. Long‐term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney International 2001;59(1):348‐57. [MEDLINE: ] - PubMed
    1. Rippe B, Wieslander A. Biologic significance of reduced levels of glucose degradation products. Peritoneal Dialysis International 2001;21 Suppl 3:S114‐8. [MEDLINE: ] - PubMed
    1. Rippe B, Wieslander A, Musi B. Long‐term results with low glucose degradation product content in peritoneal dialysis fluids. Contributions to Nephrology 2003;140:47‐55. [MEDLINE: ] - PubMed
Schmitt 2002 {published and unpublished data}
    1. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral‐pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. Journal of the American Society of Nephrology 2003;14(10):2632‐8. [MEDLINE: ] - PubMed
    1. Haas S, Schmitt CP, Schaefer F, Schaub T, Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS). Randomized cross‐over evaluation of bicarbonate‐vs lactate buffered PD solutions in children on APD [abstract]. Pediatric Nephrology 2002;17(Suppl):C53. [CENTRAL: CN‐00445609]
    1. Haas S, Schmitt CP, Schaub T, Schaefer F. Better biocompatibility and correction of acidosis using bicarbonate vs lactate buffered PD fluid in children on APD: a randomized cross‐over clinical trial [abstract]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):202A. [CENTRAL: CN‐00445610]
    1. Schmitt C, Haas S, Schaub T, Schaefer F. Randomized cross‐over administration of pH‐neutral, bicarbonate buffered PD solution in children on APD [abstract no: O51]. Nephrology Dialysis Transplantation 2002;17(Suppl 12):17.
    1. Schmitt CP, Doetschmann R, Kirchgessner J, Mehls O, Schaefer F. Comparison of solute and acid‐base transport kinetics in children using bicarbonate‐ vs. lactate‐buffered PD solutions [abstract]. Journal of the American Society of Nephrology 1998;9(Program & Abstracts):193A. [CENTRAL: CN‐00447630]
STARCH 2015 {published data only}
    1. Moraes TP, Andreoli MC, Canziani ME, Silva DR, Caramori JC, Ponce D, et al. Icodextrin reduces insulin resistance in non‐diabetic patients undergoing automated peritoneal dialysis: results of a randomized controlled trial (STARCH). Nephrology Dialysis Transplantation 2015;30(11):1905‐11. [MEDLINE: ] - PubMed
Szeto 2007 {published data only}
    1. Szeto C, Chow K, Leung C, Lam CWK, Kwan BCH, Chung K, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose‐degradation‐product ‐ a randomized control trial [abstract no: SA‐FC137]. Journal of the American Society of Nephrology 2005;16:112A.
    1. Szeto CC, Chow KM, Lam CW, Leung CB, Kwan BC, Chung KY, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose‐degradation products‐‐a 1‐year randomized control trial. Nephrology Dialysis Transplantation 2007;22(2):552‐9. [MEDLINE: ] - PubMed
Szeto 2015 {published data only}
    1. Szeto CC, Kwan BC, Chow KM, Cheng PM, Kwong VW, Choy AS, et al. The effect of neutral peritoneal dialysis solution with low glucose‐degradation‐product on the fluid status and body composition‐‐a randomized control trial. PLoS ONE [Electronic Resource] 2015;10(10):e0141425. [MEDLINE: ] - PMC - PubMed
Takatori 2011 {published and unpublished data}
    1. Akagi S, Sugiyama H, Takatori Y, Takiue K, Inoue J, Kojo S, et al. Effect of icodextrin on the fluid status in diabetic peritoneal dialysis patients ‐ an interim report [abstract no: SA443]. World Congress of Nephrology; 2009 May 22‐26; Milan, Italy. 2009.
    1. Takatori Y, Akagi S, Sugiyama H, Inoue J, Kojo S, Morinaga H, et al. Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: a randomized controlled trial. Clinical Journal of The American Society of Nephrology: CJASN 2011;6(6):1337‐44. [MEDLINE: ] - PMC - PubMed
Tranaeus 2000 {published data only}
    1. Cooker LA, Luneburg P, Holmes CJ, Jones S, Topley N, Bicarbonate/Lactate Study Group. Interleukin‐6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate‐based peritoneal dialysis solutions. Peritoneal Dialysis International 2001;21 Suppl 3:S102‐7. [MEDLINE: ] - PubMed
    1. Holmes CJ, Jones S, Mackenzie R, Coles GA, Williams JD, Tranaeus A, et al. Bicarbonate/lactate‐buffered (TBL) peritoneal dialysis fluid (PDF) decreases pro‐collagen I levels in peritoneal dialysis effluent (PDE) [abstract no: A1214]. Journal of the American Society of Nephrology 1997;8(Program & Abstracts):264A. [CENTRAL: CN‐00445763]
    1. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, et al. Bicarbonate/lactate‐based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney International 2001;59(4):1529‐38. [MEDLINE: ] - PubMed
    1. Jones S, Holmes CJ, Mackenzie RK, Stead R, Coles GA, Williams JD, et al. Continuous dialysis with bicarbonate/lactate‐buffered peritoneal dialysis fluids results in a long‐term improvement in ex vivo peritoneal macrophage function. Journal of the American Society of Nephrology 2002;13(Suppl 1):S97‐S103. [PUBMED: 11792769] - PubMed
    1. O'Donoghue DJ, Bicarbonate/Lactate Study Group. A long term study of a bicarbonate‐lactate based peritoneal dialysis solution [abstract]. Journal of the American Society of Nephrology 1999;10(Program & Abstracts):266A.
TRIO 2016 {published data only}
    1. Sikaneta T, Wu G, Abdolell M, Ng A, Mahdavi S, Svendrovski A, et al. The Trio Trial ‐ a randomized controlled clinical trial evaluating the effect of a biocompatible peritoneal dialysis solution on residual renal function. Peritoneal Dialysis International 2016;36(5):526‐32. [MEDLINE: ] - PMC - PubMed
Weiss 2009 {published and unpublished data}
    1. Weiss L, Stegmayr B, Malmsten G, Tejde M, Hadimeri H, Siegert CE, et al. Biocompatibility and tolerability of a purely bicarbonate‐buffered peritoneal dialysis solution. Peritoneal Dialysis International 2009;29(6):647‐55. [MEDLINE: ] - PubMed
Wolfson 2002 {published data only (unpublished sought but not used)}
    1. Guo A, Just P. Quality of life of peritoneal dialysis patients on icodextrin: a longitudinal study [abstract]. Quality of Life Research 2002;11(7):667. [CENTRAL: CN‐00493774]
    1. Guo A, Wolfson M, Holt R. Early quality of life benefits of icodextrin in peritoneal dialysis. Kidney International ‐ Supplement 2002;81:S72‐9. [MEDLINE: ] - PubMed
    1. Wolfson M, Hagen T, Ogrinc F, Martis L, Icodextrin Study Group. One year results‐icodextrin vs dextrose for the long dwell in peritoneal dialysis [abstract]. Journal of the American Society of Nephrology 2001;12(Program & Abstracts):317A.
    1. Wolfson M, Hagen T, Ogrinc F, Martis L, Icodextrin Study Group. Effects of icodextrin on ultrafiltration (UF) and small solute clearance in continuous ambulatory dialysis patients (CAPD) [abstract]. Journal of the American Society of Nephrology 2001;12(Program & Abstracts):317A. [CENTRAL: CN‐00653810]
    1. Wolfson M, Piraino B, Hamburger RJ, Morton AR, Icodextrin Study Group. A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. American Journal of Kidney Diseases 2002;40(5):1055‐65. [MEDLINE: ] - PubMed
Yoo 2015 {published data only}
    1. Yoo TH, Lee MJ, Oh HJ, Park JT, Han SH, Kang SW, et al. Is It beneficial to convert to a neutral‐pH bicarbonate/lactate‐buffered PD solution in long‐term CAPD patients? A single‐center prospective study. Peritoneal Dialysis International 2015;35(3):366‐9. [MEDLINE: ] - PMC - PubMed
Zeier 2003 {published data only}
    1. Zeier M, Deppisch R, Haug U, Schwenger V, Henle T, Bahner U, et al. Resorption of age‐promoting glucose degradation products (GDP) from peritoneal dialysis (PD) fluids leads to increased levels of age in plasma [abstract]. Journal of the American Society of Nephrology 2000;11(Sept):223A. [CENTRAL: CN‐00583875]
    1. Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation?. Kidney International 2003;63(1):298‐305. [MEDLINE: ] - PubMed

References to studies excluded from this review

BIOKID 2004 {published data only}
    1. Nau B, Schmitt CP, Almeida M, Arbeiter K, Ardissino G, Bonzel KE, et al. BIOKID: randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991]. BMC Nephrology 2004;5(1):14. [MEDLINE: ] - PMC - PubMed
    1. Schmitt CP, Gemulla G, Bonzel KE, Holtta T, Testa S, Fischbach M, et al. BIOKID: randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [abstract no: SU‐PO519]. Journal of the American Society of Nephrology 2007;18(Abstracts Issue):696A.
    1. Schmitt CP, Nau B, Gemulla G, Bonzel KE, Holtta T, Testa S, et al. Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clinical Journal of the American Society of Nephrology: CJASN 2013;8(1):108‐15. [MEDLINE: ] - PMC - PubMed
Braide 2009 {published data only}
    1. Braide M, Haraldsson B, Persson U. Citrate supplementation of PD fluid: effects on net ultrafiltration and clearance of small solutes in single dwells. Nephrology Dialysis Transplantation 2009;24(1):286‐92. [MEDLINE: ] - PubMed
Chang 2016 {published data only}
    1. Chang TI, Ryu DR, Yoo TH, Kim HJ, Kang EW, Kim H, et al. Effect of icodextrin solution on the preservation of residual renal function in peritoneal dialysis patients: a randomized controlled study. Medicine 2016;95(13):e2991. [MEDLINE: ] - PMC - PubMed
Chow 2014 {published data only}
    1. Chow KM, Szeto CC, Kwan BC, Pang WF, Ma T, Leung CB, et al. Randomized controlled study of icodextrin on the treatment of peritoneal dialysis patients during acute peritonitis. Nephrology Dialysis Transplantation 2014;29(7):1438‐43. [MEDLINE: ] - PubMed
Coester 2006 {published data only}
    1. Coester AM, Speake M, Summers AM, Parikova A, Hutchison AJ, Krediet RT. Effect of biocompatible peritoneal dialysis on transport status: the nutrineal, extraneal, physioneal (NEP) study [abstract no: TH‐PO812]. Journal of the American Society of Nephrology 2006;17(Abstracts):279A.
Dallas 2004 {published data only}
    1. Dallas F, Jenkins SB, Wilkie ME. Enhanced ultrafiltration using 7.5% icodextrin/1.36% glucose combination dialysate: a pilot study. Peritoneal Dialysis International 2004;24(6):542‐6. [MEDLINE: ] - PubMed
de Fijter 1993 {published data only}
    1. Fijter CW, Verbrugh HA, Oe LP, Heezius E, Donker AJ, Verhoef J, et al. Biocompatibility of a glucose‐polymer‐containing peritoneal dialysis fluid. American Journal of Kidney Diseases 1993;21(4):411‐8. [MEDLINE: ] - PubMed
    1. Fijter CWH, Oe PL, Verbrugh HA, Peters EDJ, Meulen J, Donker AJM, et al. Glucose polymers as osmotic agent in CAPD fluids: a more favorable effect on peritoneal macrophage (PMO) function than glucose‐based solutions [abstract]. Kidney International 1991;40(5):978.
EDEN 2013 {published data only}
    1. Bargman JM, Culleton BF, Do JY, Gomez RA, Yu AW, Prichard SS, et al. The impact of a low glucose peritoneal dialysis solution regimen on serum lipids and lipoproteins in diabetic patients: The IMPENDIA and EDEN randomized, controlled clinical trials [abstract no: FR‐OR027]. Journal of the American Society of Nephrology 2012; Vol. 23:37A.
    1. Li PK, Culleton BF, Ariza A, Do JY, Johnson DW, Sanabria M, et al. Randomized, controlled trial of glucose‐sparing peritoneal dialysis in diabetic patients. Journal of the American Society of Nephrology 2013; Vol. 24:1889‐900. [MEDLINE: ] - PMC - PubMed
    1. Sniderman AD, Sloand JA, Li PK, Story K, Bargman JM. Influence of low‐glucose peritoneal dialysis on serum lipids and apolipoproteins in the IMPENDIA/EDEN trials. Journal of Clinical Lipidology 2014; Vol. 8, issue 4:441‐7. [MEDLINE: ] - PubMed
Fang 2008 {published data only}
    1. Fang W, Mullan R, Shah H, Mujais S, Bargman JM, Oreopoulos DG. Comparison between bicarbonate/lactate and standard lactate dialysis solution in peritoneal transport and ultrafiltration: a prospective, crossover single‐dwell study. Peritoneal Dialysis International 2008;28(1):35‐43. [MEDLINE: ] - PubMed
Feriani 1993 {published data only}
    1. Feriani M, Dissegna D, Greca G, Passlick‐Deetjen J. Continuous ambulatory peritoneal dialysis with bicarbonate buffer‐‐a pilot study. Peritoneal Dialysis International 1993;13 Suppl 2:S88‐91. [MEDLINE: ] - PubMed
    1. Feriani M, Dissegna D, Greca G, Passlick‐Deetjen J. Short‐term clinical study with bicarbonate‐containing peritoneal dialysis solution. Peritoneal Dialysis International 1993;13(4):296‐301. [MEDLINE: ] - PubMed
Fischbach 2004 {published data only}
    1. Fischbach M, Terzic J, Chauve S, Laugel V, Muller A, Haraldsson B. Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrology Dialysis Transplantation 2004;19(4):925‐32. [MEDLINE: ] - PubMed
Hiss 2013 {published data only}
    1. Hiss M, Gerstein F, Haller H, Gueler F. Randomised prospective clinical study on outcome of peritoneal dialysis in patients using normal versus reduced glucose dialysis solution [abstract]. Nephrology Dialysis Transplantation 2013;28(Suppl 1):i437. [EMBASE: 71076352]
Hwang 2006 {published data only}
    1. Hwang JC, Wang HY, Wang CT, Chen HC. Comparison of peritoneal equilibrium test with icodextrin and 2.5% glucose dialysis solutions. Journal of Nephrology 2006;19(6):758‐63. [MEDLINE: ] - PubMed
IMPENDIA 2013 {published data only}
    1. Bargman JM, Culleton BF, Do JY, Gomez RA, Yu AW, Prichard SS, et al. The impact of a low glucose peritoneal dialysis solution regimen on serum lipids and lipoproteins in diabetic patients: The IMPENDIA and EDEN randomized, controlled clinical trials [abstract no: FR‐OR027]. Journal of the American Society of Nephrology 2012; Vol. 23, issue Abstracts:37A.
    1. Li PK, Culleton BF, Ariza A, Do JY, Johnson DW, Sanabria M, et al. Randomized, controlled trial of glucose‐sparing peritoneal dialysis in diabetic patients. Journal of the American Society of Nephrology 2013; Vol. 24, issue 11:1889‐900. [MEDLINE: ] - PMC - PubMed
    1. Li PK, Dorval M, Johnson DW, Rutherford P, Shutov E, Story K, et al. The benefit of a glucose‐sparing PD therapy on glycemic control measured by serum fructosamine in diabetic patients in a randomized, controlled trial (IMPENDIA). Nephron 2015; Vol. 129, issue 4:233‐40. [MEDLINE: ] - PubMed
    1. Sniderman AD, Sloand JA, Li PK, Story K, Bargman JM. Influence of low‐glucose peritoneal dialysis on serum lipids and apolipoproteins in the IMPENDIA/EDEN trials. Journal of Clinical Lipidology 2014; Vol. 8, issue 4:441‐7. [MEDLINE: ] - PubMed
Jenkins 2003 {published data only}
    1. Jenkins SB, Tindale W, Wilkie ME. Sodium and water clearance during peritoneal dwells with a novel combination dialysate (1.36% glucose/7.5% Icodextrin) [abstract]. Peritoneal Dialysis International 2002;22(1):114. [CENTRAL: CN‐00401399]
    1. Jenkins SB, Wilkie ME. An exploratory study of a novel peritoneal combination dialysate (1.36% glucose/7.5% icodextrin), demonstrating improved ultrafiltration compared to either component studied alone. Peritoneal Dialysis International 2003;23(5):475‐80. [MEDLINE: ] - PubMed
John 2008 {published data only}
    1. John SG, Selby NM, McIntyre CW. Effects of peritoneal dialysis fluid biocompatibility on baroreflex sensitivity. Kidney International ‐ Supplement 2008;108:S119‐24. [MEDLINE: ] - PubMed
le Poole 2004 {published data only}
    1. Poole CY, Ittersum FJ, Valentijn RM, Ter Wee PM, Schalk C. PD regimen contributes to the blood concentration of glucose degradation products (GDP) in new CAPD patients [abstract no: SA‐PO820]. Journal of the American Society of Nephrology 2003;14(Nov):478A.
    1. Welten A, Poole K, ter Wee P, Ittersum F, Valentijn R, Beelen RH, et al. Biocompatibility markers of standard versus high‐glucose regimen of CAPD patients in a multi‐centered, cross‐over study [abstract no: SA‐PO812]. Journal of the American Society of Nephrology 2003;14(Abstracts):476a.
    1. Welten AG, Poole C, ter Wee PM, Ittersum FJ, Beelen RH, Born J. The effects of a high‐versus low‐glucose regime on cell recruitment and biomarkers of CAPD patients. A multi‐center, prospective cross‐over study [abstract]. Nephrology Dialysis Transplantation 2003;18(Suppl 4):214‐5. [CENTRAL: CN‐00448337]
    1. Welten AG, Poole C, Ittersum FJ, ter Wee PM, Beelen RH, Born J. Biocompatibility of high versus low glucose regime on peritoneal cells of CAPD patients in a multicenter cross‐over study [abstract]. Peritoneal Dialysis International 2002;22(1):111. [CENTRAL: CN‐00403070]
    1. Welten AG, Poole C, Ittersum FJ, ter Wee PM, Beelen RH, Born J. Biocompatibility of high‐ versus low‐glucose regime on peritoneal cells of CAPD patients in a multi‐centered cross‐over study [abstract no: F‐PO698]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):202A. [CENTRAL: CN‐00448338]
Liberek 2002 {published data only}
    1. Liberek T, Lichodziejewska‐Niemierko M, Knopinska‐Posluszny W, Schaub TP, Kirchgessner J, Passlick‐Deetjen J, et al. Generation of TNFalpha and interleukin‐6 by peritoneal macrophages after overnight dwells with bicarbonate‐ or lactate‐buffered dialysis fluid. Peritoneal Dialysis International 2002;22(6):663‐9. [MEDLINE: ] - PubMed
Lui 2012 {published data only}
    1. Lui SL, Lui S, Yung S, Tang C, Ng F, Lo WK, et al. Effect of biocompatible peritoneal dialysis fluids on daily urine volume, serum adiponectin levels, small solute permeability and mesothelial cell integrity six months after conversion back to conventional peritoneal dialysis fluids [abstract]. Nephrology Dialysis Transplantation 2012;27(Suppl 2):ii460. [EMBASE: 70766678]
    1. Lui SL, Yung S, Yim A, Wong KM, Tong KL, Wong KS, et al. A combination of biocompatible peritoneal dialysis solutions and residual renal function, peritoneal transport, and inflammation markers: a randomized clinical trial. American Journal of Kidney Diseases 2012;60(6):966‐75. [MEDLINE: ] - PubMed
    1. Yung S, Lui SL, Ng CK, Yim A, Ma MK, Lo KY, et al. Impact of a low‐glucose peritoneal dialysis regimen on fibrosis and inflammation biomarkers. Peritoneal Dialysis International 2015;35(2):147‐58. [MEDLINE: ] - PMC - PubMed
Martikainen 2005 {published data only}
    1. Martikainen TA, Teppo AM, Gronhagen‐Riska C, Ekstrand AV. Glucose‐free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane?. Peritoneal Dialysis International 2005;25(5):453‐60. [MEDLINE: ] - PubMed
Parikova 2007 {published data only}
    1. Parikova A, Struijk DG, Zweers MM, Langedijk M, Schouten N, Berg N, et al. Does the biocompatibility of the peritoneal dialysis solution matter in assessment of peritoneal function?. Peritoneal Dialysis International 2007;27(6):691‐6. [MEDLINE: ] - PubMed
Pedersen 1985 {published data only}
    1. Pedersen FB, Ryttov N, Deleuran P. Acetate versus lactate in peritoneal dialysis solutions. Nephron 1985;39(1):55‐8. [MEDLINE: ] - PubMed
Peers 1997 {published data only}
    1. Peers E. Icodextrin plus glucose combinations for use in CAPD. Peritoneal Dialysis International 1997;17 Suppl 2:S68‐9. [MEDLINE: ] - PubMed
Plum 1997 {published data only}
    1. Plum J, Erren C, Fieseler C, Kirchgessner J, Passlick‐Deetjen J, Grabensee B. An amino acid‐based peritoneal dialysis fluid buffered with bicarbonate versus glucose/bicarbonate and glucose/lactate solutions: an intraindividual randomized study. Peritoneal Dialysis International 1999;19(5):418‐28. [MEDLINE: ] - PubMed
    1. Plum J, Fusholler A, Schoenicke G, Busch T, Erren C, Fieseler C, et al. In vivo and in vitro effects of amino‐acid‐based and bicarbonate‐buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentrations. Nephrology Dialysis Transplantation 1997;12(8):1652‐60. [MEDLINE: ] - PubMed
    1. Plum J, Fussholler A, Schonicke G, Busch T, Erren C, Fieseler C, et al. Effects of alternative peritoneal dialysis solutions on peritoneal transport and cytokines/prostanoids dialysate concentrations. Nieren‐und Hochdruckkrankheiten 1997;26(Suppl 1):S80‐5. [EMBASE: 1997355309]
Rodriguez‐Carmona 2007 {published data only}
    1. Perez‐Fontan M, Rodriguez‐Carmona A, Garcia‐Lopez E, Garcia‐Falcon T, Diaz‐Cambre E. Icodextrin‐based nocturnal automated peritoneal dialysis (APD) allows sustained ultrafiltration (UF) while reducing peritoneal glucose load. A crossover study [abstract no: TH‐PO806]. Journal of the American Society of Nephrology 2006;17(Abstracts):278A. - PubMed
    1. Rodriguez‐Carmona A, Perez Fontan M, Garcia Lopez E, Garcia Falcon T, Diaz Cambre H. Use of icodextrin during nocturnal automated peritoneal dialysis allows sustained ultrafiltration while reducing the peritoneal glucose load: a randomized crossover study. Peritoneal Dialysis International 2007;27(3):260‐6. [MEDLINE: ] - PubMed
Sav 2009 {published data only}
    1. Sav T, Oymak O, Inanc MT, Dogan A, Tokgoz B, Utas C. Effects of twice‐daily icodextrin administration on blood pressure and left ventricular mass in patients on continuous ambulatory peritoneal dialysis. Peritoneal Dialysis International 2009;29(4):443‐9. [MEDLINE: ] - PubMed
    1. Sav T, Oymak O, Sipahioglu H, Unal A, Akcakaya M, Tokgoz B, et al. The double dose icodextrin use can decrease the risk of the coronary heart disease in patients on peritoneal dialysis [abstract no: S‐PO‐0223]. 4th World Congress of Nephrology.19th International Congress of the International Society of Nephrology (ISN); 2007 Apr 21‐25; Rio de Janeiro, Brazil. 2007:108.
    1. Sav T, Oymak O, Sipahioglu MH, Unal A, Akcakaya M, Tokgoz B, et al. Double dose icodextrin not affect the peritoneal and systemic inflammation [abstract no: SaP201]. Nephrology Dialysis Transplantation 2007;22(Suppl 6):vi299. [CENTRAL: CN‐00774417]
Sav 2010 {published data only}
    1. Sav T, Inanc MT, Dogan A, Oymak O, Utas C. Two daytime icodextrin exchanges decrease brain natriuretic peptide levels and improve cardiac functions in continuous ambulatory peritoneal dialysis patients. Nephrology 2010;15(3):307‐12. [MEDLINE: ] - PubMed
Selby 2005 {published data only}
    1. Selby NM, Fluck RJ, Taal MW, McIntyre CW. Hypertonic glucose‐based peritoneal dialysate is associated with higher blood pressure and adverse haemodynamics as compared with icodextrin [abstract no: MP420]. Nephrology Dialysis Transplantation 2005;20(Suppl 5):v340. - PubMed
    1. Selby NM, Fonseca S, Hulme L, Fluck RJ, Taal MW, McIntyre CW. Hypertonic glucose‐based peritoneal dialysate is associated with higher blood pressure and adverse haemodynamics as compared with icodextrin. Nephrology Dialysis Transplantation 2005;20(9):1848‐53. [MEDLINE: ] - PubMed
Selby 2007a {published data only}
    1. Selby NM, Fialova J, Burton JO, McIntyre CW. The haemodynamic and metabolic effects of hypertonic‐glucose and amino‐acid‐based peritoneal dialysis fluids. Nephrology Dialysis Transplantation 2007;22(3):870‐9. [MEDLINE: ] - PubMed
Smit 2000 {published data only}
    1. Smit W, Ho‐dac‐Pannekeet MM. Peritoneal permeability characteristics using glycerol based dialysate in CAPD [abstract]. Nephrology Dialysis Transplantation 1997;12(9):A182. [CENTRAL: CN‐00261426]
    1. Smit W, Waart DR, Struijk DG, Krediet RT. Peritoneal transport characteristics with glycerol‐based dialysate in peritoneal dialysis. Peritoneal Dialysis International 2000;20(5):557‐65. [MEDLINE: ] - PubMed
Smit 2001 {published data only}
    1. Smit W, Langedijk MJ, Schouten N, Berg N, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Peritoneal Dialysis International 2001;20(6):734‐41. [MEDLINE: ] - PubMed
    1. Smit W, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solutions for the assessment of peritoneal membrane function [abstract no: A1160]. Journal of the American Society of Nephrology 2000;11(Sept):219A. - PubMed
    1. Smit W, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solutions for the assessment of peritoneal membrane function [abstract]. Nephrology Dialysis Transplantation 2000;15(9):A233. [CENTRAL: CN‐00461758] - PubMed
Ueda 2000 {published data only}
    1. Ueda Y, Miyata T, Goffin E, Yoshino A, Inagi R, Ishibashi Y, et al. Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney International 2000;58(6):2518‐24. [MEDLINE: ] - PubMed
Van Biesen 2004 {published data only}
    1. Biesen W, Boer W, Greve B, Dequidt C, Vijt D, Faict D, et al. A randomized clinical trial with a 0.6% amino acid/ 1.4% glycerol peritoneal dialysis solution. Peritoneal Dialysis International 2004;24(3):222‐30. [MEDLINE: ] - PubMed
Yehia 2014 {published data only}
    1. Yehia M, Muyoma G, Topley N, Collins JF. The use of exchange‐free periods alternating with daily exchanges of icodextrin in the initial treatment of peritoneal dialysis‐associated peritonitis: a safety study. Peritoneal Dialysis International 2014;34(7):810‐3. [MEDLINE: ] - PMC - PubMed
Yoon 2014 {published data only}
    1. Yoon HE, Chang YK, Shin SJ, Choi BS, Kim BS, Park CW, et al. Benefits of a continuous ambulatory peritoneal dialysis (CAPD) technique with one icodextrin‐containing and two biocompatible glucose‐containing dialysates for preservation of residual renal function and biocompatibility in incident CAPD patients. Journal of Korean Medical Science 2014;29(9):1217‐25. [MEDLINE: ] - PMC - PubMed

References to studies awaiting assessment

Cho 2010 {published data only}
    1. Cho KH, Jung SY, Do JY, Park JW, Yoon KW. The effect of low GDP solution on ultrafiltration and solute transport in CAPD patients [abstract]. NDT Plus 2010;3:iii166. [EMBASE: 70483857]
Dai 2010 {published data only}
    1. Dai HL, Lin AW, Qian JQ, Fang W, Ni ZH, Cao LO, et al. Icodextrin improve angiogenesis of peritoneal membrane in continuous ambulatory peritoneal dialysis patients. Chung‐Hua i Hsueh Tsa Chih [Chinese Medical Journal] 2010;90(40):2843‐7. [MEDLINE: ] - PubMed
De Los Rios 2016 {published data only}
    1. Rios T, Perez‐Martinez J, Portoles J, Lichodziejewska‐Niemierko M, Rivera M, Nowicki M, et al. Effect of balance solution on the peritoneal membrane in automated peritoneal dialysis. Peritoneal Dialysis International 2016;36(5):569‐72. [MEDLINE: ] - PMC - PubMed
Do 2006a {published data only}
    1. Do J, Bae D, Kim M, Lee S, Park J, Yoon K. The effect of low GDPs solution on survival in continuous ambulatory peritoneal dialysis patients and the associated factors with survival [abstract no: F‐PO347]. Journal of the American Society of Nephrology 2006;17(Abstracts):411A.
Infante 2000 {published data only}
    1. Gesualdo L, Infante B, Guastadisegni MC, Grandaliano G, Petrarulo F, Giannattasio M, et al. Ca125/pai‐1 ration as a marker of biocompatibility in CAPD: a prospective randomized clinical trial [abstract]. Journal of the American Society of Nephrology 2000;11(Sept):208A. [CENTRAL: CN‐00615878]
    1. Infante B, Guastadisegni MC, Grandaliano G, Colucci M, Semeraro N, Petrarulo F, et al. Ca125/pai‐1 ration may be a marker of peritoneal dialysis (PD) fluids biocompatibility and membrane longevity: a clinical randomized prospective study [abstract]. Nephrology Dialysis Transplantation 2000;15(9):A238. [CENTRAL: CN‐00460988]
Kim 2006 {published data only}
    1. Kim Y, Choi B, Yang C, Chang Y, Bang B. Clinical benefits of a bicarbonate/lactate‐based peritoneal dialysis solution [abstract no: SP706]. Nephrology Dialysis Transplantation 2006;21(Suppl 4):iv253.
Kocyigit 2015 {published data only}
    1. Kocyigit I, Unal A, Gungor O, Orscelik O, Eroglu E, Dogan E, et al. Effects of dialysis solution on the cardiovascular function in peritoneal dialysis patients. Internal Medicine 2015;54(1):3‐10. [MEDLINE: ] - PubMed
NCT01753154 {published data only}
    1. Feriani M. The effect of balance PD solution on the peritoneal membrane in patients on automated peritoneal dialysis. www.clinicaltrials.gov/ct2/show/NCT01753154 (first received 20 December 2012).
Opatrna 2002 {published data only}
    1. Opatrna S, Linhartova K, Opatrny J, Senft V, Stehlik P, Sefrna F, et al. The effect of icodextrin dialysis solution on selected metabolic parameters in patients on continuous ambulatory peritoneal dialysis (CAPD) [abstract]. Kidney & Blood Pressure Research 2000:131. [CENTRAL: CN‐00509396]
    1. Opatrna S, Racek J, Stehlik P, Senft V, Sefrna F, Topolcan O, et al. Effect of a dialysis solution with icodextrin on ultrafiltration and selected metabolic parameters in patients treated with peritoneal dialysis [Vliv podani dialyzacniho roztoku s icodextrinem na ultrafiltraci a vybrane metabolicke parametry nemocnych lecenych peritonealni dialyzou]. Casopis Lekaru Ceskych 2002;141(9):281‐5. [MEDLINE: ] - PubMed
Rodriguez‐Carmona 2012 {published data only}
    1. Rodriguez‐Carmona A, Perez‐Fontan M, Guitian A, Peteiro J, Garcia‐Falcon T, Lopez‐Muniz A, et al. Effect of low‐GDP bicarbonate‐lactate‐buffered peritoneal dialysis solutions on plasma levels of adipokines and gut appetite‐regulatory peptides. A randomized crossover study. Nephrology Dialysis Transplantation 2012;27(1):369‐74. [MEDLINE: ] - PubMed
Yang 2002b {published data only}
    1. Yang CW, Wu CH, Yu CC, Weng SM, Fang JT, Wu MS, et al. Dependence of ultrafiltration response to icodextrin on peritoneal membrane transport type [abstract no: F‐PO684]. Journal of the American Society of Nephrology 2002;13(September, Program & Abstracts):199A. [CENTRAL: 00448455]

References to ongoing studies

NCT01228279 {published data only}
    1. Ruzicka M. Effects of non‐glucose‐based peritoneal dialysis solution "extraneal" on changes in leptin levels and sympathetic activity induced by conventional glucose‐based dialysate "dianeal" in patients on peritoneal dialysis. www.clinicaltrials.gov/ct2/show/NCT01228279 (first received 26 October 2010).

Additional references

Ayuzawa 2012
    1. Ayuzawa N, Ishibashi Y, Takazawa Y, Kume H, Fujita T. Peritoneal morphology after long‐term peritoneal dialysis with biocompatible fluid: recent clinical practice in Japan. Peritoneal Dialysis International 2012;32(2):159‐67. [MEDLINE: ] - PMC - PubMed
Bargman 2001
    1. Bargman JM, Thorpe KE, Churchill DN, CANUSA Peritoneal Dialysis Study Group. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. Journal of the American Society of Nephrology 2001;12(10):2158‐62. [MEDLINE: ] - PubMed
Bargman 2010
    1. Bargman JM. Slouching towards Bethlehem: the beast of biocompatibility. Nephrology Dialysis Transplantation 2010;25(7):2050‐1. [MEDLINE: ] - PubMed
Boulanger 2002
    1. Boulanger E, Wautier MP, Wautier JL, Boval B, Panis Y, Wernert N, et al. AGEs bind to mesothelial cells via RAGE and stimulate VCAM‐1 expression. Kidney International 2002;61(1):148‐56. [MEDLINE: ] - PubMed
Brown 2009
    1. Brown EA, Biesen W, Finkelstein F, Hurst H, Johnson DW, Kawanishi H, et al. Length of time on peritoneal dialysis and encapsulating peritoneal sclerosis: position paper for ISPD. Peritoneal Dialysis International 2009;29(6):595‐600. [MEDLINE: ] - PubMed
Brown 2017
    1. Brown EA, Bargman J, Biesen W, Chang MY, Finkelstein FO, Hurst H, et al. Length of time on peritoneal dialysis and encapsulating peritoneal sclerosis: position paper for ISPD: 2017 update. Peritoneal Dialysis International 2017;37(4):362‐74. [MEDLINE: ] - PubMed
Cho 2012
    1. Cho Y, Badve SV, Hawley CM, Wiggins K, Johnson DW. Biocompatible peritoneal dialysis fluids: clinical outcomes. International Journal of Nephrology 2012;2012:812609. [MEDLINE: ] - PMC - PubMed
Davies 2009
    1. Davies SJ. Preserving residual renal function in peritoneal dialysis: volume or biocompatibility?. Nephrology Dialysis Transplantation 2009;24(9):2620‐2. [MEDLINE: ] - PubMed
GRADE 2008
    1. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck‐Ytter Y, Alonso‐Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336(7650):924‐6. [MEDLINE: ] - PMC - PubMed
GRADE 2011
    1. Guyatt G, Oxman A D, Akl E A, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction‐GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 2011;64:383‐94. [MEDLINE: ] - PubMed
Higgins 2003
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta‐analyses. BMJ 2003;327(7414):557‐60. [MEDLINE: ] - PMC - PubMed
Higgins 2011
    1. Higgins JP, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane‐handbook.org.
Htay 2016
    1. Htay H, Cho Y, Pascoe EM, Darssan D, Hawley CM, Johnson DW, et al. Predictors of residual renal function decline in peritoneal dialysis patients: the balANZ trial. Peritoneal Dialysis International 2017;37(3):283‐9. [MEDLINE: ] - PubMed
Johnson 2003
    1. Johnson DW, Agar J, Collins J, Disney A, Harris DC, Ibels L, et al. Recommendations for the use of icodextrin in peritoneal dialysis patients. Nephrology 2003;8(1):1‐7. [MEDLINE: ] - PubMed
Johnson 2010
    1. Johnson DW, Cho Y, Livingston BE, Hawley CM, McDonald SP, Brown FG, et al. Encapsulating peritoneal sclerosis: incidence, predictors, and outcomes. Kidney International 2010;77(10):904‐12. [MEDLINE: ] - PubMed
Johnson 2012
    1. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, et al. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrology Dialysis Transplantation 2012;27(12):4445‐53. [MEDLINE: ] - PMC - PubMed
Jorres 1992
    1. Jorres A, Topley N, Gahl GM. Biocompatibility of peritoneal dialysis fluids. International Journal of Artificial Organs 1992;15(2):79‐83. [MEDLINE: ] - PubMed
Jorres 1998
    1. Jorres A, Bender TO, Finn A, Witowski J, Frohlich S, Gahl GM, et al. Biocompatibility and buffers: effect of bicarbonate‐buffered peritoneal dialysis fluids on peritoneal cell function. Kidney International 1998;54(6):2184‐93. [MEDLINE: ] - PubMed
Jorres 2012
    1. Jörres A. Novel peritoneal dialysis solutions‐‐what are the clinical implications?.[Erratum appears in Blood Purif. 2012;34(1):17]. Blood Purification 2012;33(1‐3):153–9. [MEDLINE: ] - PubMed
Justo 2005
    1. Justo P, Belen Sanz A, Egido J, Ortiz A. 3,4‐Dideoxyglucosone‐3‐ene induces apoptosis in renal tubular epithelial cells. Diabetes 2005;54(8):2424‐9. [MEDLINE: ] - PubMed
Lamb 1995
    1. Lamb EJ, Cattell WR, Dawnay AB. In vitro formation of advanced glycation end products in peritoneal dialysis fluid. Kidney International 1995;47(6):1768‐74. [MEDLINE: ] - PubMed
Lan 2016
    1. Lan PG, Clayton PA, Johnson DW, McDonald SP, Borlace M, Badve SV, et al. Duration of hemodialysis following peritoneal dialysis cessation in Australia and New Zealand: proposal for a standardized definition of technique failure. Peritoneal Dialysis International 2016;36(6):623‐30. [MEDLINE: ] - PMC - PubMed
Li 2017
    1. Li P, Chow KM, Luijtgaarden MW, Johnson DW, Jager KJ, Mehrotra R, et al. Changes in the worldwide epidemiology of peritoneal dialysis. Nature Reviews Nephrology 2017;13(2):90‐103. [MEDLINE: ] - PubMed
Mateijsen 1999
    1. Mateijsen MA, Wal AC, Hendriks PM, Zweers MM, Mulder J, Struijk DG, et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Peritoneal Dialysis International 1999;19(6):517‐25. [MEDLINE: ] - PubMed
Mehrotra 2016
    1. Mehrotra R, Devuyst O, Davies SJ, Johnson DW. The current state of peritoneal dialysis. Journal of the American Society of Nephrology 2016;27(11):3238‐52. [MEDLINE: ] - PMC - PubMed
Mortier 2003
    1. Mortier S, Vriese AS, McLoughlin RM, Topley N, Schaub TP, Passlick‐Deetjen J, et al. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. Journal of the American Society of Nephrology 2003;14(5):1296‐306. [MEDLINE: ] - PubMed
Mortier 2004
    1. Mortier S, Faict D, Schalkwijk CG, Lameire NH, Vriese AS. Long‐term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney International 2004;66(3):1257‐65. [MEDLINE: ] - PubMed
Mortier 2005
    1. Mortier S, Faict D, Lameire NH, Vriese AS. Benefits of switching from a conventional to a low‐GDP bicarbonate/lactate‐buffered dialysis solution in a rat model. Kidney International 2005;67(4):1559‐65. [MEDLINE: ] - PubMed
Mujais 2000
    1. Mujais S, Nolph K, Gokal R, Blake P, Burkart J, Coles G, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Peritoneal Dialysis International 2000;20 Suppl 4:S5‐21. [MEDLINE: ] - PubMed
Nadeau‐Fredette 2015
    1. Nadeau‐Fredette AC, Chan CT, Cho Y, Hawley CM, Pascoe EM, Clayton PA, et al. Outcomes of integrated home dialysis care: a multi‐centre, multi‐national registry study. Nephrology Dialysis Transplantation 2015;30(11):1897‐904. [MEDLINE: ] - PubMed
Nakayama 1997
    1. Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katoh N, et al. Immunohistochemical detection of advanced glycosylation end‐products in the peritoneum and its possible pathophysiological role in CAPD. Kidney International 1997;51(1):182‐6. [MEDLINE: ] - PubMed
Nataatmadja 2017
    1. Nataatmadja M, Cho Y, Johnson DW. Evidence for biocompatible peritoneal dialysis solutions. Contributions to Nephrology 2017;189:91‐101. [MEDLINE: ] - PubMed
Nilsson‐Thorell 1993
    1. Nilsson‐Thorell CB, Muscalu N, Andren AH, Kjellstrand PT, Wieslander AP. Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Peritoneal Dialysis International 1993;13(3):208‐13. [MEDLINE: ] - PubMed
Pollock 2005
    1. Pollock C. Pathogenesis of peritoneal sclerosis. International Journal of Artificial Organs 2005;28(2):90‐6. [MEDLINE: ] - PubMed
Rigby 1998
    1. Rigby RJ, Hawley CM. Sclerosing peritonitis: the experience in Australia. Nephrology Dialysis Transplantation 1998;13(1):154‐9. [MEDLINE: ] - PubMed
Schambye 1996
    1. Schambye HT. Effect of different buffers on the biocompatibility of CAPD solutions. Peritoneal Dialysis International 1996;16 Suppl 1:S130‐6. [MEDLINE: ] - PubMed
Schünemann 2011a
    1. Schünemann HJ, Oxman AD, Higgins JP, Vist GE, Glasziou P, Guyatt GH. Chapter 11: Presenting results and 'Summary of findings' tables. In: Higgins JP, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane‐handbook.org.
Schünemann 2011b
    1. Schünemann HJ, Oxman AD, Higgins JP, Deeks JJ, Glasziou P, Guyatt GH. Chapter 12: Interpreting results and drawing conclusions. In: Higgins JP, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane‐handbook.org.
Szeto 2017
    1. Szeto CC, Johnson DW. Low GDP solution and glucose sparing strategies for peritoneal dialysis. Seminars in Nephrology 2017;37(1):30‐42. [MEDLINE: ] - PubMed
Topley 1997
    1. Topley N. In vitro biocompatibility of bicarbonate‐based peritoneal dialysis solutions. Peritoneal Dialysis International 1997;17(1):42‐7. [MEDLINE: ] - PubMed
Vaamonde 1975
    1. Vaamonde CA, Michael UF, Metzger RA, Carroll KE Jr. Complications of acute peritoneal dialysis. Journal of Chronic Diseases 1975;28(11‐12):637‐59. [MEDLINE: ] - PubMed
Wang 2015
    1. Wang AY, Brimble KS, Brunier G, Holt SG, Jha V, Johnson DW, et al. ISPD cardiovascular and metabolic guidelines in adult peritoneal dialysis patients Part I ‐ assessment and management of various cardiovascular risk factors. Peritoneal Dialysis International 2015;35(4):379‐87. [MEDLINE: ] - PMC - PubMed
Wieslander 1996
    1. Wieslander A, Forsback G, Svensson E, Linden T. Cytotoxicity, pH, and glucose degradation products in four different brands of PD fluid. Advances in Peritoneal Dialysis 1996;12:57‐60. [MEDLINE: ] - PubMed
Williams 2003
    1. Williams JD, Craig KJ, Topley N, Williams GT. Peritoneal dialysis: changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney International ‐ Supplement 2003;84:S158–61. [MEDLINE: ] - PubMed
Witowski 2005
    1. Witowski J, Jorres A. Effects of peritoneal dialysis solutions on the peritoneal membrane: clinical consequences. Peritoneal Dialysis International 2005;25 Suppl 3:S31‐4. [MEDLINE: ] - PubMed
Yohanna 2015
    1. Yohanna S, Alkatheeri AM, Brimble SK, McCormick B, Iansavitchous A, Blake PG, et al. Effect of neutral‐pH, low‐glucose degradation product peritoneal dialysis solutions on residual renal function, urine volume, and ultrafiltration: a systematic review and meta‐analysis. Clinical Journal of The American Society of Nephrology: CJASN 2015;10(8):1380‐8. [MEDLINE: ] - PMC - PubMed

References to other published versions of this review

Cho 2014
    1. Cho Y, Johnson DW, Craig JC, Strippoli GF, Badve SV, Wiggins KJ. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database of Systematic Reviews 2014, Issue 3. [DOI: 10.1002/14651858.CD007554.pub2] - DOI - PubMed
Wiggins 2009
    1. Wiggins KJ, Craig JC, Johnson DW, Strippoli GF. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database of Systematic Reviews 2009, Issue 1. [DOI: 10.1002/14651858.CD007554] - DOI - PubMed

MeSH terms

LinkOut - more resources