Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2019 Feb;20(2):113-119.
doi: 10.1097/PCC.0000000000001764.

Performance of Pediatric Mortality Prediction Scores for PICU Mortality and 90-Day Mortality

Affiliations
Randomized Controlled Trial

Performance of Pediatric Mortality Prediction Scores for PICU Mortality and 90-Day Mortality

An Jacobs et al. Pediatr Crit Care Med. 2019 Feb.

Abstract

Objectives: The use of mortality prediction scores in clinical trials in the PICU is essential for comparing patient groups. Because of the decline in PICU mortality over the last decades, leading to a shift toward later deaths, recent trials use 90-day mortality as primary outcome for estimating mortality and survival more accurately. This study assessed and compared the performance of two frequently used PICU mortality prediction scores for prediction of PICU and 90-day mortality.

Design: This secondary analysis of the randomized controlled Early versus Late Parenteral Nutrition in the Pediatric Intensive Care Unit trial compared the discrimination (area under the receiver operating characteristic curve) and calibration of the Pediatric Index of Mortality 3 and the Pediatric Risk of Mortality III scores for prediction of PICU and 90-day mortality.

Setting: Three participating PICUs within academic hospitals in Belgium, the Netherlands, and Canada.

Patients: One-thousand four-hundred twenty-eight critically ill patients 0-17 years old.

Interventions: None.

Measurements and main results: Although Pediatric Index of Mortality 3 only includes information available at the time of PICU admission, thus before any intervention in the PICU, it showed good discrimination (area under the receiver operating characteristic curve, 0.894; 95% CI, 0.892-0.896) and good calibration (no deviation from the diagonal, p = 0.58) for PICU mortality. Pediatric Risk of Mortality III, which involves the worst values for the evaluated variables during the first 24 hours of PICU stay, was statistically more discriminant (area under the receiver operating characteristic curve, 0.920; 95% CI, 0.918-0.921; p = 0.04) but poor in calibration (significant deviation from the diagonal; p = 0.04). Pediatric Index of Mortality 3 and Pediatric Risk of Mortality III discriminated equally well between 90-day mortality and survival (area under the receiver operating characteristic curve, 0.867; 95% CI, 0.866-0.869 and area under the receiver operating characteristic curve, 0.882; 95% CI, 0.880-0.884, respectively, p = 0.77), but Pediatric Risk of Mortality III was not well calibrated (p = 0.04), unlike Pediatric Index of Mortality 3 (p = 0.34).

Conclusions: Pediatric Index of Mortality 3 performed better in calibration for predicting PICU and 90-day mortality than Pediatric Risk of Mortality III and is not influenced by intervention or PICU quality of care. Therefore, Pediatric Index of Mortality 3 seems a better choice for use in clinical trials with 90-day mortality as primary outcome.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources