Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 18;51(12):e7437.
doi: 10.1590/1414-431X20187437.

Insights on the epigenetic mechanisms underlying pulmonary arterial hypertension

Affiliations
Review

Insights on the epigenetic mechanisms underlying pulmonary arterial hypertension

R C P Luna et al. Braz J Med Biol Res. .

Abstract

Pulmonary arterial hypertension (PAH), characterized by localized increased arterial blood pressure in the lungs, is a slow developing long-term disease that can be fatal. PAH is characterized by inflammation, vascular tone imbalance, pathological pulmonary vascular remodeling, and right-sided heart failure. Current treatments for PAH are palliative and development of new therapies is necessary. Recent and relevant studies have demonstrated that epigenetic processes may exert key influences on the pathogenesis of PAH and may be promising therapeutic targets in the prevention and/or cure of this condition. The aim of the present mini-review is to summarize the occurrence of epigenetic-based mechanisms in the context of PAH physiopathology, focusing on the roles of DNA methylation, histone post-translational modifications and non-coding RNAs. We also discuss the potential of epigenetic-based therapies for PAH.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Epigenetic mechanisms contributing to excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) in pulmonary arterial hypertension (PAH) include: i) DNA methylation via DNA methyltransferases (DNMTs); ii) histone modifications, mainly methylation and acetylation, regulated by histone acetyltransferases (HATs) histone methyltransfereses (HMTs), histone deacetylases (HDACs), and histone demethylases (HDMs). Dysregulation of the ubiquitination process, as well as of microRNAs (miRNA, miR-) also participates in the pathogenesis of PAH. Epigenetic therapy based on DNMT inhibitors, HADAC inhibitors, proteasome inhibitors, and miR-RNA modulators are able to reduce the PASMCs proliferative state in PAH.

References

    1. Humbert M, Lau EM, Montani D, Jais X, Sitbon O, Simonneau G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation. 2014;130:2189–2208. doi: 10.1161/CIRCULATIONAHA.114.006974. - DOI - PubMed
    1. Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492. doi: 10.1136/bmj.j5492. - DOI - PMC - PubMed
    1. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–1030. doi: 10.1164/rccm.200510-1668OC. - DOI - PubMed
    1. Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M. A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J. 2007;30:1103–1110. doi: 10.1183/09031936.00042107. - DOI - PubMed
    1. McGoon MD, Benza RL, Escribano-Subias P, Jiang X, Miller DP, Peacock AJ, et al. Pulmonary arterial hypertension: epidemiology and registries. J Am Coll Cardiol. 2013;62:D51–D59. doi: 10.1016/j.jacc.2013.10.023. - DOI - PubMed

MeSH terms

Substances