Optimization of carbon and energy utilization through differential translational efficiency
- PMID: 30367068
- PMCID: PMC6203783
- DOI: 10.1038/s41467-018-06993-6
Optimization of carbon and energy utilization through differential translational efficiency
Abstract
Control of translation is vital to all species. Here we employ a multi-omics approach to decipher condition-dependent translational regulation in the model acetogen Clostridium ljungdahlii. Integration of data from cells grown autotrophically or heterotrophically revealed that pathways critical to carbon and energy metabolism are under strong translational regulation. Major pathways involved in carbon and energy metabolism are not only differentially transcribed and translated, but their translational efficiencies are differentially elevated in response to resource availability under different growth conditions. We show that translational efficiency is not static and that it changes dynamically in response to mRNA expression levels. mRNAs harboring optimized 5'-untranslated region and coding region features, have higher translational efficiencies and are significantly enriched in genes encoding carbon and energy metabolism. In contrast, mRNAs enriched in housekeeping functions harbor sub-optimal features and have lower translational efficiencies. We propose that regulation of translational efficiency is crucial for effectively controlling resource allocation in energy-deprived microorganisms.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically.Mol Biosyst. 2013 Nov;9(11):2775-84. doi: 10.1039/c3mb70232d. Mol Biosyst. 2013. PMID: 24056499
-
Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen.PLoS Comput Biol. 2019 Mar 7;15(3):e1006848. doi: 10.1371/journal.pcbi.1006848. eCollection 2019 Mar. PLoS Comput Biol. 2019. PMID: 30845144 Free PMC article.
-
Genome-Scale Analysis of Acetobacterium woodii Identifies Translational Regulation of Acetogenesis.mSystems. 2021 Aug 31;6(4):e0069621. doi: 10.1128/mSystems.00696-21. Epub 2021 Jul 27. mSystems. 2021. PMID: 34313456 Free PMC article.
-
Translational efficiency in gas-fermenting bacteria: Adding a new layer of regulation to gene expression in acetogens.iScience. 2023 Nov 2;26(12):108383. doi: 10.1016/j.isci.2023.108383. eCollection 2023 Dec 15. iScience. 2023. PMID: 38034355 Free PMC article. Review.
-
The crosstalk between metabolism and translation.Cell Metab. 2024 Sep 3;36(9):1945-1962. doi: 10.1016/j.cmet.2024.07.022. Cell Metab. 2024. PMID: 39232280 Review.
Cited by
-
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals.Int J Mol Sci. 2020 Oct 15;21(20):7639. doi: 10.3390/ijms21207639. Int J Mol Sci. 2020. PMID: 33076477 Free PMC article. Review.
-
Absolute Proteome Quantification in the Gas-Fermenting Acetogen Clostridium autoethanogenum.mSystems. 2022 Apr 26;7(2):e0002622. doi: 10.1128/msystems.00026-22. Epub 2022 Apr 6. mSystems. 2022. PMID: 35384696 Free PMC article.
-
Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida.NPJ Syst Biol Appl. 2025 May 24;11(1):55. doi: 10.1038/s41540-025-00521-1. NPJ Syst Biol Appl. 2025. PMID: 40413180 Free PMC article.
-
A diversified, widespread microbial gene cluster encodes homologs of methyltransferases involved in methanogenesis.bioRxiv [Preprint]. 2023 Nov 11:2023.07.31.551370. doi: 10.1101/2023.07.31.551370. bioRxiv. 2023. PMID: 37577662 Free PMC article. Preprint.
-
RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium.Microbiol Spectr. 2022 Aug 31;10(4):e0230322. doi: 10.1128/spectrum.02303-22. Epub 2022 Jul 27. Microbiol Spectr. 2022. PMID: 35894617 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases