Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jun 15;262(17):8318-24.

Effects of prolipoprotein signal peptide mutations on secretion of hybrid prolipo-beta-lactamase in Escherichia coli

  • PMID: 3036809
Free article

Effects of prolipoprotein signal peptide mutations on secretion of hybrid prolipo-beta-lactamase in Escherichia coli

C A Lunn et al. J Biol Chem. .
Free article

Abstract

Hybrid proteins were constructed by coupling beta-lactamase to the signal sequence (plus nine amino acids) of selected mutant prolipoproteins of Escherichia coli. The mutant prolipoprotein signal peptides contained lesions in two structural domains of the signal peptide, the basic amino-terminal domain and the hydrophobic core domain. We then compared the processing and localization of the mutant prolipo-beta-lactamases to the processing and localization of the comparable mutant prolipoproteins. We show that a mutant signal sequence with an anionic amino terminus exhibits similar limitations in the processing of prolipo-beta-lactamase as previously observed in prolipoprotein. Deletion of four hydrophobic residues from hydrophobic core results in a signal peptide which slowly translocates a fraction of the total mutant hybrid protein synthesized. This signal peptide was previously shown to translocate lipoprotein efficiently. Alteration of this hydrophobic core, which stimulated synthesis of mutant prolipoproteins, does not stimulate synthesis of prolipo-beta-lactamase. Finally mutations that slowed processing of prolipoprotein by affecting the proposed helical structure of the signal peptide had no significant effect on the processing of prolipo-beta-lactamase. These results suggest that the positively charged amino-terminal domain of the signal peptide has a common role in protein secretion regardless of the secretory protein. On the other hand, other domains of the signal peptide exhibit different phenotypes when the secretory protein is changed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources