Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul 15;262(20):9569-73.

Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation

  • PMID: 3036866
Free article

Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation

M Ikebe et al. J Biol Chem. .
Free article

Abstract

Smooth muscle heavy meromyosin (HMM) is phosphorylated by the Ca2+-activated phospholipid-dependent protein kinase, i.e. protein kinase C, at three sites on each 20,000-dalton light chain. Phosphorylation of three sites also is observed with isolated 20,000-dalton light chain and HMM subfragment 1. The phosphorylation sites are serine 1, serine 2, and threonine 9. Threonine is phosphorylated most rapidly followed by either serine 1 or 2. Phosphorylation of the third site occurs only on prolonged incubation. Phosphorylation is a random process. HMM phosphorylated at two sites per light chain by protein kinase C can be dephosphorylated, as shown using two phosphatase preparations. Increasing levels of phosphorylation of HMM by protein kinase C causes a progressive inhibition of the subsequent rate of phosphorylation of serine 19 by myosin light chain kinase and causes a progressive inhibition of actin-activated ATPase activity of HMM, prephosphorylated by myosin light chain kinase. Inhibition of ATPase activity is due to a decreased affinity of HMM for actin rather than a change in Vmax. Previous results with HMM and protein kinase C (Nishikawa, M., Sellers, J. R., Adelstein, R. S., and Hidaka, H. (1984) J. Biol. Chem. 259, 8808-8814) examined effects induced by phosphorylation of the threonine residues. Our results confirm these and consider also the influence of higher levels of phosphorylation by protein kinase C.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources