Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 28;66(1):65-74.
doi: 10.1507/endocrj.EJ18-0343. Epub 2018 Oct 26.

Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells

Affiliations
Free article

Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells

Liu Yang et al. Endocr J. .
Free article

Abstract

The human homologue of flightless-I (FLII) belong to the gelsolin protein family and contain a gelsolin-like domain at the C-terminus and a leucine-rich repeat (LRR) domain at the N-terminus. FLII regulates estrogen receptor alpha (ERα) and glucocorticoid receptor (GR)-mediated transcription by direct interaction through different domains, suggestive of its potential role in the crosstalk between the ERα and GR signaling pathway. Here, we demonstrate that FLII plays a critical role in GR-mediated repression of ERα target gene expression. In FLII-depleted cells, the reduction in 17-β-estradiol (E2)-induced ERα occupancy following treatment with dexamethasone (Dex) at the estrogen responsive element (ERE) site of the ERα target gene was significantly inhibited. The ERE binding of GR by the cotreatment with E2 and Dex was significantly inhibited by FLII depletion, indicating that FLII is required for the recruitment of GR at the ERE sites of ERα target genes. In addition, the recruitment of ERα-induced FLII to ERE sites was significantly reduced by Dex treatment. In protein binding assays, GR inhibited the E2-induced interaction between ERα and FLII, suggesting that GR interferes with the binding of ERα and FLII at the ERα target genes, resulting in the release of ERα and FLII from EREs. Taken together, our data reveal an unknown mechanism by which the transcription coactivator FLII regulates the GR-mediated repression of ERα target gene expression in MCF-7 cells.

Keywords: Dexamethasone; Estrogen receptor α; Flightless-I; Glucocorticoid receptor.

PubMed Disclaimer

MeSH terms