Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 7;1(5):e181851.
doi: 10.1001/jamanetworkopen.2018.1851.

Association of Race and Ethnicity With Glycemic Control and Hemoglobin A1c Levels in Youth With Type 1 Diabetes

Affiliations

Association of Race and Ethnicity With Glycemic Control and Hemoglobin A1c Levels in Youth With Type 1 Diabetes

Anna R Kahkoska et al. JAMA Netw Open. .

Abstract

Importance: Health disparities in the clinical presentation and outcomes among youth with type 1 diabetes exist. Long-term glycemic control patterns in racially/ethnically diverse youth are not well described.

Objectives: To model common trajectories of hemoglobin A1c (HbA1c) among youth with type 1 diabetes and test how trajectory group membership varies by race/ethnicity.

Design setting and participants: Longitudinal cohort study conducted in 5 US locations. The analysis included data from 1313 youths (aged <20 years) newly diagnosed in 2002 through 2005 with type 1 diabetes in the SEARCH for Diabetes in Youth study (mean [SD] age at diabetes onset, 8.9 [4.2] years) who had 3 or more HbA1c study measures during 6.1 to 13.3 years of follow-up. Data were analyzed in 2017.

Exposures: Self-reported race/ethnicity.

Main outcomes and measures: Hemoglobin A1c trajectories identified through group-based trajectory modeling over a mean (SD) of 9.0 (1.4) years of diabetes duration. Multinomial models studied the association of race/ethnicity with HbA1c trajectory group membership, adjusting for demographic characteristics, clinical factors, and socioeconomic position.

Results: The final study sample of 1313 patients was 49.3% female (647 patients) with mean (SD) age 9.7 (4.3) years and mean (SD) disease duration of 9.2 (6.3) months at baseline. The racial/ethnic composition was 77.0% non-Hispanic white (1011 patients), 10.7% Hispanic (140 patients), 9.8% non-Hispanic black (128 patients), and 2.6% other race/ethnicity (34 patients). Three HbA1c trajectories were identified: group 1, low baseline and mild increases (50.7% [666 patients]); group 2, moderate baseline and moderate increases (41.7% [548 patients]); and group 3, moderate baseline and major increases (7.5% [99 patients]). Group 3 was composed of 47.5% nonwhite youths (47 patients). Non-Hispanic black youth had 7.98 higher unadjusted odds (95% CI, 4.42-14.38) than non-Hispanic white youth of being in the highest HbA1c trajectory group relative to the lowest HbA1c trajectory group; the association remained significant after full adjustment (adjusted odds ratio of non-Hispanic black race in group 3 vs group 1, 4.54; 95% CI, 2.08-9.89). Hispanic youth had 3.29 higher unadjusted odds (95% CI, 1.78-6.08) than non-Hispanic white youth of being in the highest HbA1c trajectory group relative to the lowest HbA1c trajectory group; the association remained significant after adjustment (adjusted odds ratio of Hispanic ethnicity in group 3 vs group 1, 2.24; 95% CI, 1.02-4.92). In stratified analyses, the adjusted odds of nonwhite membership in the highest HbA1c trajectory remained significant among male patients and youth diagnosed at age 9 years or younger, but not female patients and youth who were older than 9 years when they were diagnosed (P for interaction = .04 [sex] and .02 [age at diagnosis]).

Conclusions and relevance: There are racial/ethnic differences in long-term glycemic control among youth with type 1 diabetes, particularly among nonwhite male patients and nonwhite youth diagnosed earlier in life.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Crandell reported grants from the National Institutes of Health (NIH) during the conduct of the study. Dr Lawrence reported grants from the National Institute of Diabetes and Digestive and Kidney Diseases during the conduct of the study. Dr Tooze reported grants from the NIH during the conduct of the study. Dr Wagenknecht reported grants from the NIH during the conduct of the study. Dr Zhong reported other support from Sanofi US outside the submitted work. No other disclosures were reported.

Figures

Figure 1.
Figure 1.. Study Design and Sample Recruitment
A, Study design of the SEARCH cohort study. B, Flowchart depicting participants in this report, including reasons for exclusion. The final sample included 1313 youths with type 1 diabetes. BV indicates baseline visit.
Figure 2.
Figure 2.. Trajectories of Hemoglobin A1c in 1313 Patients With Type 1 Diabetes in the SEARCH for Diabetes in Youth Study
Group-based trajectory modeling identified 3 distinct hemoglobin A1c trajectories over a mean type 1 diabetes duration of 108 months. To convert hemoglobin A1c to proportion of total hemoglobin, multiply by 0.01.

Comment in

Similar articles

Cited by

References

    1. Diabetes Control and Complications Trial Research Group Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr. 1994;125(2):-. doi:10.1016/S0022-3476(94)70190-3 - DOI - PubMed
    1. Nathan DM, Genuth S, Lachin J, et al. ; Diabetes Control and Complications Trial Research Group . The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-986. doi:10.1056/NEJM199309303291401 - DOI - PubMed
    1. White NH, Cleary PA, Dahms W, Goldstein D, Malone J, Tamborlane WV; Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group . Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT). J Pediatr. 2001;139(6):804-812. doi:10.1067/mpd.2001.118887 - DOI - PubMed
    1. Pyatak EA, Sequeira PA, Whittemore R, Vigen CP, Peters AL, Weigensberg MJ. Challenges contributing to disrupted transition from paediatric to adult diabetes care in young adults with type 1 diabetes. Diabet Med. 2014;31(12):1615-1624. doi:10.1111/dme.12485 - DOI - PMC - PubMed
    1. Helgeson VS, Snyder PR, Seltman H, Escobar O, Becker D, Siminerio L. Brief report: trajectories of glycemic control over early to middle adolescence. J Pediatr Psychol. 2010;35(10):1161-1167. doi:10.1093/jpepsy/jsq011 - DOI - PMC - PubMed