Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun;234(6):8134-8151.
doi: 10.1002/jcp.27598. Epub 2018 Oct 28.

Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions

Affiliations
Review

Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions

Myat Theingi Swe et al. J Cell Physiol. 2019 Jun.

Abstract

The kidneys are as involved as the liver in gluconeogenesis which can significantly contribute to hyperglycemia in the diabetic condition. Substantial evidence has demonstrated the overexpression of rate-limiting gluconeogenic enzymes, especially phosphoenolpyruvate carboxykinase and glucose 6 phosphatase, and the accelerated glucose release both in the isolated proximal tubular cells and in the kidneys of diabetic animal models and diabetic patients. The aim of this review is to provide an insight into the mechanisms that accelerate renal gluconeogenesis in the diabetic conditions and the therapeutic approaches that could affect this process in the kidney. Increase in gluconeogenic substrates, reduced insulin concentration or insulin resistance, downregulation of insulin receptors and insulin signaling, oxidative stress, and inappropriate activation of the renin-angiotensin system are likely to participate in enhancing renal gluconeogenesis in the diabetic milieu. Several studies have suggested that controlling glucose metabolism at the renal level favors effective overall glycemic control in both type 1 and type 2 diabetes. Therefore, renal gluconeogenesis may be a promising target for effective glycemic control as a therapeutic strategy in diabetes.

Keywords: diabetes mellitus; hyperglycemia; insulin resistance; renal gluconeogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources